
NAVAL POSTGRADUATE SCHOOL
Monterey, California

r

040

THESIS
PARTICLE-SIZING SYSTEM FOR

SCANNING ELECTRON MICROSCOPE IMAGES OF
SOLID-PROPELLANT COMBUSTION EXHAUST

by

Yeaw-Lip Lee

March 1991

Thesis Advisor: John P. Powers

Approved for public release; distribution is unlimited

91-15998IIIII/LIi/lIIllhIlIllhllllh!!i/I1I!IIII, 9 1 1 1 2 8

t L. s,4a,tUu

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
1 a. REPORT SECURITY CLASSIFICATION l b RESTRICTIVE MARKINGS

UNCLASSIFIED

2a SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release; distribution unlimited
2b DECLASSIFICATION/DOWNGRADING SCHEDULE

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION

Naval Postgraduate School (Ifapplicable) Naval Postgraduate School

6c ADDRESS (City, State, and ZIP Code) 7b ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000

8a NAME OF FUNDING/SPONSORING 8b OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

8c ADDRESS (City, State, andZIP Code) 10, SOURCE OF FUNDING NUMBERS

Program Element No Project No I aJ No Work Unit Accewon
Number

11 TITLE (Include Security Classification)

PARTICLE-SIZING SYSTEM FOR SCANNING ELECTRON MICROSCOPE IMAGES OF SOLID-
PROPELLANT COMBUSTION EXHAUST (U)

12 PERSONAL AUTHOR(S) LEE, YEAW-LIP

13a TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (year, month, day) 15. PAGE COUNT
Master's Thesis From To March 1991 149

16 SUPPLEMENTARY NOTATION

The views expressed in this thesis are those of the author and do not reflect the official policy of the Department of
Defense or the U.S. Government
17 COSATI CODES 18. SUBJECT TERMS (continue on reverse if necessary and identify by block number)

FIELD GROUP SUBGROUP Particle sizin SEM, image digitization, image segmentation,
rocket motor,U language

19 ABSTRACT (continue on reverse if necessary and identify by block number)

Accurate measurement of particle size distribution of rocket motor exhausts is essential
for predicting the combustion efficiency and infrared plume signature. This thesis presents
an automatea method for extracting k article size distribution from scanning electron
microscope (SEM) images. The SEM images were taken off a filter paper placed at the end of
a collection probe inserted into the exhaust plume. The automatecSEM extraction system
consists of an IBM AT-based computer system fitted with a 512 x 480 pixel frame grabber.
Photographic images taken off the SEivNare acquired via a vidicon camera. A C language
p rogram was written to control the hardware and automate the extraction process. A
threshold is first applied to the digitized image and the resultinf, binary image is subjected to
object segmentation. Each object is then sized and the distibution from one or more images
can be plotted. The main bulk of this thesis is to document the software specially written to
undertake this set of tasks. Results obtained were compared with that from a Malvern

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
El NCLASSIFItOUNIL'ITED ESAM AS REPORT 0 OIC USERS Unclassified

22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area code) 22c OFFICE SYMBOL
John P. Powers (408)-646-2679 EC/Po

DO FORM 1473,84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete U nclasssified

i

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

MasterSizer particle si7er and found to be favorable. Particles as small as 1/8 microns have

been successfully sized.

i£

DD Form 1473, JUN 86(Reverse) SECURITY CLASSIFICATION OF THIS PAGE

Unclassified

Approved for public release; distribution is unlimited.

Particle-Sizing System for
Scanning Electron Microscope Images

of Solid-Propellant Combustion Exhaust

by

Yeaw-Lip Lee

Civilian, Singapore Ministry of Defense

B.Eng. (Elect), National University of Singapore, 1985

Submitted in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL

March 1991

Author: _ _ _ _ _ _

Yeaw-Lip Lee

Approved by: _
Jo . Powers, Thesis A Wisor

David W. Netzer, Secon eader

A t,.k i -or

Michael A. Morgan, ChairmaW

Departmen L of Electrical and Computer Engineering : .,

r t ,?d,

DI
7 V.# 1

ABSTRACT

Accurate measurement of particle size distribution of rocket motor exhausts is

essential for predicting the combustion efficiency and infrared plume signature. This

thesis presents an automated method for extracting particle size distribution from

scanning electron microscope (SEM) images. The SEM images were taken off a

filter paper placed at the end of a collection probe inserted into the exhaust plume.

The automated SEM extraction system consists of an IBM AT-based computer

system fitted with a 512 x 480 pixel frame grabber. Photographic images taken off

the SEM are acquired via a vidicon camera. A C language program was written to

control the hardware and automate the extraction process. A threshold is first

applied to the digitized image and the resulting binary image is subjected to object

segmentation. Each object is then sized and the distribution from one or more

images can be plotted. The main bulk of this thesis is to document the software

specially written to undertake this set of tasks. Results obtained were compared with

that from a Malvern MasterSizer particle sizer and found to be favorable. Particles

as small as 1/8 gm have been successfully sized.

iv

TABLE OF CONTENTS

I. INTRO DU CTIO N ... 1

II. SEM IMAGES OF COMBUSTION EXHAUST 4

A. COMBUSTION PHENOMENA 4

B. SOURCE OF SEM IMAGES 6

1. Experim ental Setup 7

2. Preparation of SEM Specimens 7

3. Photographing the SEM Images 9

C. CURRENT EFFORTS 10

III. OVERVIEW OF THE AUTOMATED SIZING SYSTEM 11

A. HARDWARE CONFIGURATION 12

B. SOFTWARE SUPPORT 14

IV. DETAILED DESCRIPTION OF SEMEX 17

A. PROGRAM MODULES 20

1. M odule MAIN 20

2. Module ACQUIRE 22

3. M odule CLIP 24

4. M odule TA G 26

5. M odule SIZE 31

6. Module ANALYZE 34

7. M odule SETUP 37

V

8. M odule SEM IO 42

V. RUNNING SEM EX 44

A. SEMEX SETUP PROCEDURE 44

1. Initial Alignment and Focusing 45

2. Setting Camera Input Gain and Offset 46

3. Determining the System Scaling Factor 47

4. Adjusting the Illumination 47

5. Changing System Defaults 49

B. IMAGE ACQUISITION PROCEDURE 49

C. IMAGE PROCESSING PROCEDURE 51

1. Thresholding with CLIP 51

2. Image Segmentation using TAG 52

3. Feature Sizing using SIZE 53

D. IMAGE ANALYSIS PROCEDURE 54

1. Merging the Data Files 54

2. Calculating Particle Volume 55

VI. EXPERIMENTAL RESULTS 57

A. CALIBRATION 57

1. Determining Pixel Aspect Ratio 57

2. Quantifying System Errors 58

B. PERFORMANCE COMPARISON WITH HOLOGRAM

PROG RA M .. 64

vi

C. CORRELATION WITH MALVERN MASTERSIZER 68

VII. CONCLUSIONS AND RECOMMENDATIONS 71

A. HARDWARE LIMITATIONS AND RECOMMENDATIONS .. 71

1. L ight T able 71

2. V ideo M onitor 71

3. V ideo Cam era 72

4. Direct Acquisition of SEM Images 72

5. Sun W orkstation 73

B. SOFTWARE ENHANCEMENTS 74

1. Automatic Camera Input Adjustment 74

2. Automatic Threshold Algorithm 75

3. Improved Image Processing Algorithms 75

4. Fram e Border 76

C. IMPROVEMENTS IN METHODOLOGY 77

1. Photographing SEM Images 77

2. Running SEM EX 77

D. CONCLUSIONS 78

APPENDIX A. NOTES TO THE PROGRAMMER AND THE USER ... 79

A. SEMEX PROGRAM FILES 79

B. SEMEX OUTPUT FILES 83

C. WORKING FROM DIFFERENT DIRECTORIES 83

D. SPECIAL KEYS TO NOTE 85

vii

APPENDIX B. PROGRAM LISTINGS..............................87

LIST OF REFERENCES ... 132-

INITIAL DISTRIBUTION LIST...................................134

viii

LIST OF TABLES

I. CAMERA PIXEL SIZE......................................57

I.COMPARISON OF EXECUTION TIMES FOR HOLOGRAM AND
SEMEX .. 67

ix

LIST OF FIGURES

1. Combustion and flow characteristics of a metallized solid-fuel [From
Ref. 9:p. 424] .. 4

2. Experimental setup to collect exhaust particles from a solid-propellant
rocket m otor [R ef. 11] 8

3. Diagram showing the equipment setup used for extracting particle size
data from SEM photographic images [After Ref. 12] 11

4. Block diagram of the PCVISIONplus frame grabber board [From
Ref. 12] ... 13

5. Typical sequence of activities in SEMEX 18

6. Block diagram of SEMEX modules (rounded rectangles) and their
functions 19

7. Pseudo-codes for SEMEX main program main() (top), frame grabber
initialization fginito (bottom left), and sessions file naming function
sessionnameO (bottom right) 20

8. A typical session recorded in the sessions file 21

9. Pseudo-code for image acquisition function acquireO 22

10. Pseudo-codes for clipmainO, interactive clipping clipo (top right),
automatic clipping autoclipo (center right), and background threshold
determination findthd() 24

11. Pseudo-code for TAG algorithm. Left column shows tagmaino) while right
column shows tago ... 27

12. Pseudo-codes for tagrowO() and tagrows() algorithms used for
differentiating features from background in the first and subsequent rows,
respectively 28

13. Pseudo-codes for checkmergeo) and tagmerge() used for checking the
number of features in a merging window and for carrying out the
m erging, respectively 29

X

14. Pseudo-codes for SIZE module functions sizemain(O (left) and size()
(right) .. 32

15. Pseudo-code for function pixelsizeO which scans each pixel in the image
and identifies it as part of a feature 3

16. Pseudo-code for function outdataO which tabulates the feature sizes and
writes it to a data file 34

17. Pseudo-codes for the ANALYZE module showing from top to bottom,
analyzeO, merge-dataO, extract-dataO, and histovolO 36

18. Pseudo-code for the function check equipmentO which aids in the physical
setup of the camera and the lights 37

19. Pseudo-code for the function measurelineO used to determine the
vertical scaling factor of a 5 pm line in the SEM image 38

20. Pseudo-codes for functions put cursorO and unputcursorO which
manipulate the graphics cursor while functions putlineO and unput-line()
deal with lines .. 39

21. Samples of clipped images showing the non-uniformity of the illumination.
Darkened areas have the same or lower pixel values 40

22. Pseudo-code for Lhe function setup() in the module SETUP 41

23. SETUP dialog box showing default parameters which the user can change
to customize SEMEX 42

24. Pseudo-codes for the SEMIO module. Functions getimO and putimO
handle image transfers to and from disk while chgexto is used to set the
default file extension 43

25. SEMEX main menu showing the six options 45

26. Digitized SEM image showing the orientation of the 5Mm reference line
and other textual information 46

27. Measuring a line during SETUP. This determines the vertical scaling
factor ... 48

28. Adjusting the threshold level in SETUP to determine the uniformity of
the illim ination 48

xi

29. Acquiring a stored image into the frame memory. When the image is
fetched from disk, the comments stored in the image header will be
displayed 50

30. Cropping the right margin of the image in ACQUIRE. This is to remove
the textual information on the image 50

31. Clipping image using the automatic threshold which the user can
subsequently change using the [+] and [-] keys 52

32. Screen for selecting the outcome of the clipped image. Option 3 is the
default which can be invoked by pressing [Enter] 52

33. TAG screen showing the number of features, the number merged and the
final count. The final prompt requests whether to save the tagged
im age . 53

34. SIZE screen showing number of features sized and the time taken to size
them. There is also a prompt to save the sized feature data 54

35. Tabulated data showing the calculated equivalent elliptical areas
(AREAC), the measured pixel areas (AREA_M), the X-Chords and Y-
Chords for 20 features 55

36. ANALYZE screen prompting one data file at a time with its date of
creation. Pressing 'Y' or 'y' accepts the datafile. A count is kept of
the number of files selected 56

37. Calibration test pattern consisting of 48 donut pads placed in four
row s . 58

38. Output from SIZE showing the results obtained from the calibratio:i test
pattern. The calculated area, AREAC, is given by 7r/4 * X CHORD *
Y _C H O R D .. 60

39. Digitized image of a square grid showing that vertical lines near the right
edge were slanted when compared with a dark rectangular graphics
b o x . 6 1

40. 3-D plot showing the pixel values from a digitized image of a donut pad.
Note that the plot has been inverted for clarity. This gives rise to high
peaks for dark regions 62

xii

41. Three-dimensional plot showing a 32 x 32 pixel region drawn three times
at different thresholds. The left portion is the gray scale image. The
center and right portions are at thresholds of 33 and 165 64

42. Images used for testing the performance of SEMEX against
HOLOGRAM. Image #1 is the calibration test pattern with 48 features
while images #2, #3 and #4 are actual SEM images with 177, 495 and
920 features respectively 66

43. MATLAB plot showing the histogram data from SEMEX and Malvern
MasterSizer. The SEMEX data was obtained from three images with a
total of 584 particles 69

44. MATLAB plot showing the histogram data from SEMEX and Malvern
MasterSizer. The SEMEX data was obtained from six images with a total
of 1062 particles ... 70

45. Three-dimensional plot of a particle showing that the center region is not
a plateau. A smaller particle can be seen rising out of the center. This
would give rise to two particle counts 76

46. Listing of SEMEX C source files, object files and executable files using
the DOS DIR command 80

47. MAKEFILE used in creating SEMEX 81

48. List of output files generated by SEMEX 84

xiii

ACKNOWLEDGMENT

Inasmuch as many have undertaken to compile an account of the things
accomplished among us, just as those who from the beginning were
eyewitnesses and servants of the word have handed them down to us, it scemed
fitting for me as well, having investigated everything carefully from the
beginning, to write it out for you in consecutive order, most excellent
Theophilus; so that you might know the exact truth about the things you have
been taught. (The Gospel According to Luke, The Holy Bible)

The above passage has provided me much inspiration and motivation to write

this thesis. I would like to thank my thesis advisor, Prof. John Powers, and my

second reader, Prof. David Netzer, for sharing their knowledge and for their careful

guidance. CAPT Lyle Kellman has been especially helpful in explaining the

intricacies of collecting exhaust samples. Many thanks go to him for the many

painstaking hours spent in front of the SEM to provide me the SEM photographic

images used in my work. I would also like to thank Kim Tran for her assistance in

reproducing some of the figures. Finally, I would like to thank my wife, Chew-Leng,

for her unwavering support and for her assistance in proof-reading this thesis.

xiv

I. INTRODUCTION

The rationale for analyzing scanning electron microscope (SEM) images of

combustion exhaust stems from the on-going research to investigate particle behavior

in exhaust nozzles and plumes of solid propellant rocket motors. Netzer and Powers

describe various methods being tried in the quest to obtain accurate particle size

distribution [Ref. 1]. Accuracy is essential because the various computer

codes available for predicting performance and infrared signatures are highly

sensitive to the particle size distribution.

Traditionally, SEM images are analyzed visually by a trained observer, with the

aid of linear scales (stage or eyepiece micrometer), graticules (British Standard BS

3406), or other visual cues. Full use is made of the human observer's ability and

talent to differentiate shapes and features. Humphries [Ref. 2] has a concise

description of the various methods. Disadvantages include low productivity, fatigue,

observer subjectivity, and a high probability of error. The generally small sample

population which a human observer is able to analyze also results in sampling errors

due to poor statistical averaging.

The standard procedure in particle size analysis (PSA) is to allot each particle

to its appropriate size class and, from the resultant data, calculate (or determine

graphically) parameters that adequately describe the size distribution. These

parameters include particle projection lengths, perimeter, form factor, area and

volume. Automatic PSA offers a significant advantage over manual microscopy in

1

that it allows large numbers of particles to be measured consistently and accurately.

However, automatic PSA is not without limitations. Resolution and contrast

performance of the imager is generally poorer than the human eye. Also, the

instruments for such systems tend to be rather elaborate and expensive.

The current effort is a spin-off from work done with holograms, first by

Redman [Ref. 3] and Orguc [Ref. 4] using the FORTRAN language, and

subsequently by Kaeser [Ref. 5] and Hockgraver [Ref. 6] in the C language. The

C algorithms used in this thesis have been optimized for speed, yet have reduced

false feature identification. In the earlier work with holograms, significant problems

were encountered with speckle in the reconstructed hologram images. This limited

the particle size determination to particles larger than 10 microns [Ref. 7].

The current work attempts to analyze particles down to the resolution limits of the

imaging system. For the SEM images analyzed, particle size distributions down to

one-eighth of a micron have been achieved.

This thesis is divided into six chapters. Chapter II describes the SEM images,

what they represent and how they are obtained. Chapter III provides an overview

of all the hardware and software required to support this work. Chapter IV goes into

the detailed description of the program modules making up the Scanning Electron

Microscope Extraction (SEMEX) program which forms the bulk of the current effort.

Chapter V describes the procedures required to acquire a SEM image from a

photograph, to process it to a form suitable for extraction of particles, and, finally,

to extract and compile the results for plotting or further statistical analysis. Chapter

2

VI describes the experimental results beginning with calibration, speed performance

comparison with earlier programs, and finally summarizes the results from SEM

images obtained from an actual motor burn. The latter are correlated with results

obtained from the Malvern MasterSizer particle sizer [Ref. 8]. The last

chapter lists the conclusions arrived at and recommendations for future efforts in this

area.

3

I1. SEM IMAGES OF COMBUSTION EXHAUST

This chapter introduces the combustion mechanisms involved in metallized

solid-fuels and solid-propellants, and the need for accurate measurement of the

plume particle size distribution. One such method using SEM images of the

collected exhaust is described.

A. COMBUSTION PHENOMENA

The higher energetic performance of metallized solid-fuels (i.e., fuels containing

boron, magnesium, titanium, aluminum, etc.) has sparked considerable interest in

solid-fuel ramjets. While the exact combustion phenomena for metallized fuels has

not been fully understood, Gany and Netzer [Ref. 91 describes one possible

scenario, shown in Figure 1. During combustion, the hydrocarbon fuel vaporizes at

the surface exposing the metal fuel particles. As there is little or no oxygen at the

AIR FLOW
BURNING PARTICLES

EAT RADIAT*1i~y~
PARTICLE IG141TION ZON4E

(T GAS PHASE REACTION

.''- METALLIZED SOLID FUEL-'....

Figure 1. Combustion and flow characteristics of a metallized solid-fuel
[From Ref. 9:p. 424].

4

fuel surface, these metal particles can heat up but will not ignite. As more of the

surrounding hydrocarbon fuel vaporizes, the metal particles tend to coalesce before

being ejected into the main flow which is rich in oxygen. A particle may collide with

other particles and agglomerate, or it may contact oxygen and ignite intensely.

Agglomeration of metal particles may be one reason for poor combustion efficiency.

Another may be due to the oxide coating on the particle, thus slowing the rate of

chemical reaction. Agglomeration and oxidation also result in a large variation in

particle sizes.

Metals are also added to solid-propellants for rocket applications to provide

combustion stability and/or increased performance. Aluminum is the most often

used performance enhancer. The particles burn to produce aluminum oxide of

varying sizes. When these particles pass through the exhaust nozzle, they can change

in size distribution due to breakup and collisions. This two-phase flow results in a

loss in delivered thrust. When these particles exit the nozzle into the plume, they

significantly affect the plume radiation. The infrared signature of the exhaust plume

is a function of the temperature profile of the plume and this, in turn, is dependent

on its composition of hot gases and metal particles. From high-speed infrared

imaging, it is noticed that the center of the plume appears hottest. Some of this is

due to afterburning of the fuel-rich exhaust gases with the ambient oxygen. It is also

suspected that the larger particles cannot turn as rapidly as the gas within the exhaust

nozzle, resulting in these particles being located nearer to the plume centerline.

They also have a greater heat capacity and, hence, cool off slowest after exiting from

5

the exhaust. Accurate prediction of plume radiation requires accurate knowledge of

the particle size distribution at the nozzle exit. To validate the codes, axial and

radial variations in the plume particle size distribution need to be accurately

measured.

The need for accurate determination of particle size and their distribution is

recognized and accurate methods are available to determine modal distributions.

However, a complication lies in the multi-modal distributions caused by the wide

range of particle sizes expected. Particle sizes may vary from sub-micron sizes to

several tens of microns. For particles larger than about 2 Am, various methods, such

as forward laser-diffraction measurements [Ref. 101 have been successful. For sizes

down to 0.5 Am, the Malvern MasterSizer particle sizer has been used; utilizing Mie

corrections to the diffraction equations [Ref. 8]. Measurements using these

techniques have not been successful for particles in gas flows smaller than 0.5 Am

because of the requirement for short focal length lenses and the resulting restricted

measurement volumes. Analysis of the collected exhaust particles using the SEM

avoids these problems and shows promise as it allows for very clean images even at

high magnification. Resolutions down to one-eighth of a micron have been possible,

as is shown in this work.

B. SOURCE OF SEM IMAGES

The SEM images are extracted from combustion exhaust taken from a small

(5 cm) experimental rocket motor developed by the Naval Postgraduate School.

Different propellant compositions are being tested. The firings and subsequent

6

extraction of the SFM images were carried out by CAPT Lyle Kellman, a thesis

student working under Prof. David Netzer. A detailed description of his work is

found in his thesis [Ref. 11]. Each firing produces two sets of Malvern

MasterSizer data, one generated directly during the burn and another from dissolving

the filter paper removed from the collection probe. Part of the filter paper from the

collection probe is also analyzed under the SEM. The resulting SEM images are the

inputs to SEMEX and the focus of this thesis study.

1. Experimental Setup

The combustion exhaust from the rocket motor is sampled with the aid of

a collection probe. The probe is placed at a desired !ocation behind the exhaust

nozzle and is protected from the intense heat of the exhaust by a plume deflector.

The deflector prevents the plume from impinging on the collection probe tip until

the rocket motor achieves steady-state, and is then lowered for one second. The

exhaust enters the collection probe through a small entry nozzle and expands inside,

depositing the combustion products on a filter paper. At about the same time, the

Malvern MasterSizer is activated to scan the captured exhaust plume and to store its

results for later analysis. A schematic of the setup is shown in Figure 2.

2. Preparation of SEM Specimens

After firing, the f"ter paper is removed from the rear of the probe. Two

half-inch diameter samples are cut out from the edge and center of the filter paper.

These samples are gold-plated in preparation for scanning under the SEM.

7

PLUME SPLITTER

hALVERN

MALVERN COFFIN COFFIN

DEFLECTOR~FILTER

/ PAPER
ROCKET I 1 /1

PROBE PLUME SPLITTER

DEFLECTOR]

ROCKET 1

TOP VIEW SIDE VIEW

Figure 2. Experimental setup to collect exhaust particles from a solid-
propellant rocket motor [Ref. 11].

The rest of the filter paper is dissolved in acetone. The metal particles are

allowed to settle to the bottom and the supernatant liquid is siphoned off. This

process is repeated several times until the paper is fully dissolved and removed. In

the final step, acetone is added again and the mixture of acetone and solid particles

is agitated to get a homogeneous mixture. A drop of this mixture is cxtracted and

analyzed with the Malvern MasterSizer. This produces a second set of Malvern

results.

One source of error comes from dirt or other debris being introduced on

the filter paper during combustion and subsequent handling. Sampling errors can

8

occur if the half-inch samples are not taken from representative portions of the filter

paper where particles are uniformly distributed.

3. Photographing the SEM Images

The prepared specimens are placed inside a Hitachi Model S450 SEM and

the SEM chamber evacuated to a high vacuum. The specimens can be moved about

in search of representative portions of the specimens. This is carried out with the

SEM on low magnification. The area being scanned is displayed on a high-

persistence CRT. Once particles are found, the magnification is increased to 1,000.

The scanning electron micrographs are then recorded on Polaroid photographic film

for subsequent analysis by SEMEX. The resulting images have between 5 and 1,000

particles, depending on the type of propellant used, the time of exposure, the

distance of the collection probe from the exit nozzle, the radial position of the probe,

and the location of the filter paper from which the sample was taken. To increase

the number of particles on a single photograph, multiple exposures were taken from

different fields. It was found that up to four exposures could be taken without

significant degradation to the image. The SEM was set for maximum contrast and

minimum brightness so that the background stays relatively dark even after four

exposures.

A source of error comes about from the choice of the area to be

photographed. This is a subjective task. Many of the areas may contain only a few

particles while a few areas may contain a large splattering of particles. Each

photographed area (70 jam by 80 uim) only represents about 1/22,500th of the sample

9

area and typically only 30 to 40 different areas can be photographed in a 4-hour

session. Thus, the size distribution of the particles can be heavily biased by the SEM

operator if thL particles are not evenly distributed.

C. CURRENT EFFORTS

Current work carried out by the Naval Postgraduate School for the Air Force

Phillips Laboratory include analysis of the exhaust plume by high-speed video and

infrared cameras, programmed data acquisition of temperature and pressure using

transducers, and analysis of the exhaust plume composition by the Malvern

MasterSizer and SEMEX. The experimental data will be used both as inputs to and

for validation of plume prediction computer codes. The work is primarily carried out

by the Aeronautics Department with the Electrical and Computer Department

assisting in the area of SEM image digitization and feature extraction.

In this thesis, the work done encompasses the development of the SEMEX

program and the setting up of a reliable methodology for the digitization and feature

extraction of the SEM images. Calibration of the system has been carried out and

comparisons have been made with the Malvern MasterSizer. The performance of

several SEMEX modules (in particular, CLIP, TAG and SIZE) have also been

compared with relevant portions of the HOLOGRAM C program developed by

Kaeser [Ref. 5] and improved upon by Hockgraver [Ref. 6]. The results have been

favorable.

10

III. OVERVIEW OF THE AUTOMATED SIZING SYSTEM

The automated particle sizing system consists of an IBM AT microcomputer

fitted with dedicated hardware and run by a program written in the C language.

Figure 3 shows the equipment involved in the extraction of particle size data from

COMPUTER
VIDICON MONITORCAMERA

1- GLASS PLATE IBM AT/36 IHOLDING DOWN

GRAPHIC IMAGE MEMORY
MAPPED I/O

- ---------------- -

UIGHT TABLEDIf1R
/ I DIGITIZER

IS17 I FRAME

R S-170 1MEMORY IH VIDEO I
FORMAT DISPI.Y LOGIC

VIDEO MONITOR I

FRAME GRABBER

- VIDEO COPY
---JPROCESSOR

Figure 3. Diagram showing the equipment setup used for extracting
particulate size data from SEM photographic images [After
Ref. 12].

SEM photographic images. SEM photographic images are acquired by the vidicon

camera and digitized by the frame grabber. Processing of the images is carried out

by the IBM AT and the processed image is displayed on the video monitor.

Digitized images in the frame memory can be saved to disk for later retrieval. User

11

dialog is carried out through the use of the computer monitor and the keyboard. A

hardcopy of the digitized image can be printed on the video copy processor. The

details of the hardware configuration and the software support are described in the

rest of this chapter.

A. HARDWARE CONFIGURATION

The system configuration consists of the following hardware:

IBM AT with Intel Inboard 386/AT accelerator board and EGA monitor. The
Inboard 386/AT disables the Intel 80286 microprocessor inside the IBM AT
and executes programs with the 32-bit Intel 8030r ?croprocessor running at
16 MHz. This enhancement gives a speedup .i 11.6 over a standard IBM PC.
The computer also has a 80287 ma ii coprocessor running at 10 MHz to speed
up floating point operations. 'ihe EGA monitor functions in text mode and
displays the dialog boxes. 'Ine use.- :,akcs his or her choices by typing in
commands on the keyboard.

Imaging Technology PCVISIONp/us frame grabber board. This is a video
digitizer and frame memory capable of digitizing the standard RS-170
composite video input from the vidicon camera. Figure 4 shows a block
diagram of the frame grabber. Two camera inputs are available. Each camera
input, in turn, has three input channels (red, blue, and green) to handle pseudo-
color images. However, only the green channel is being used for monochrome
images because it carries the synchronization signals. The built-in gain and
offset circuits can be adjusted through software control to achieve optimum
brightness and contrast. The look-up tables (LUTs) are special memories used
to transform pixel values without altering the contents of frame memory.
Although there are 32 LUTs (8 input LUTs, and 8 output LUTs for each of the
red, blue and green channels), only one input LUT and one output (green)
LUT are required. The digitized image, stored in a special on-board high-
speed memory (called the frame memory), can be manipulated by specially
written software functions and saved to a disk file for later analysis. The frame
memory can handle up to two images, each 512 x 512 pixels wide. However,
the RS-170 video signal can only provide 512 pixels by 480 lines. Therefore,
the 481st to 512th rows of the frame memory are not used. The digitized
image has to be converted back to analog RS-170 video signals before the

age can be displayed on a composite video monitor. [Ref. 12]

12

Vince IWV t

,"STEM

OPTIO1-LYI[

OF, I Lal

Figure 4. lBlock diagram of the PCVISIQNplus frame grabber board

[From Ref. 12].

Panasonic Model WV-1410 CCTV camera and light table. The Closed-Circuit
Television (CCTV) camera uses a 525-line vidicon imaging element with
25 mm f/1.4 lens and is able to operate down to 5 lux incandescent
illumination. The internal electronics scan and convert the image into
composite monochrome video which is routed to the frame grabber. The light
table (not shown) consists of an adjustable mount for the camera and four
75 W incandescent lamps fitted with diffusers. Setting the height at
approximately 13 inches from the SEM photograph enables the 3.5" by 4.5"
photographic image to be captured onto the 512 x 480 pixel video frame. The
camera and illumination setup is critical for obtaining a good digitized image.
A piece of flat transparent glass, used to hold the photograph flat, completes
this setup. Dust particles should be excluded. The placement of the lamps is
crucial for obtaining even illumination. A detailed procedure is provided in
Chapter V.

*Panasonic TR-196M monochrome composite video monitor. This is used to
display the digitized SEM image and any video operations carried out on it.

13

on it. The horizontal size of this particular monitor cannot be adjusted to
display the full frame. Hence, the left and right edges are not visible and can
only be seen using the video copy processor. This is a serious shortcoming as
edge artifacts caused by poor light placement cannot be detected readily.

" Tektronix HC01 video copy processor. The video copy processor accepts
composite video from the output channel of the frame grabber board and is
used for making a hardcopy of the video image displayed on the composite
video monitor. The video copy processor uses a thermal process to etch the
video image onto 4-inch wide heat-sensitive paper.

" IOMEGA Bernoulli Box II dual removable cartridge disk (RCD) system. Each
RCD consists of two flexible disks enclosed in a plastic housing providing
20 MB of formatted disk storage. As each digitized image takes between
100 kB to 250 kB in a compressed form, this allows storage of approximately
100 images in each RCD. One drive is dedicated to storing image and data
files. The data files contain the tabulated particle sizes (.dat files), the
histogram results (.his files) and the session activities (.ses files). The other
drive contains the executable SEMEX file and the C source codes for all the
modules, together with the library files and the software development system.
A 44 MB version of the RCD is also available.

" HP LaserJet series II printer for producing a hardcopy of the results and the
histogram plots (optional).

B. SOFTWARE SUPPORT

The software used to support this work include:-

* Microsoft C Optimizing Compiler, version 5.1, with Large Memory Model Run-
Time Library, CodeView Symbolic Debugger and Overlay Linker. This
provides the C programming language and the software development system for
the SEMEX program. The compiler converts the C source files into object
files which are linked together with the libraries by the linker. The large
memory model library (LLIBCE.LIB) is recommended by Imaging Technology
to support their ITEX PCplus software. This model allows for multiple 64 kB
segments for both code and data to contain the large image and data arrays.
CodeView aids in the debugging process by allowing single-step program
operation while observing key variables. Microsoft also has a MAKE facility
that automates the compilation and linking process through the use of a special
batch file shown in Appendix A.

14

. Star Guidance Window BOSS windowing package. The Window BOSS is an
extensive library of C functions for the creation, management and manipulation
of text winaows, which are essentially dialog boxes for program-user interaction.
It allows for multiple windows to be created using dynamic memory allocation
and manages these windows. Window attributes like border styles, border
colors, and window foreground and background colors can be set. Context-
sensitive help screens can be easily implemented. Forms and input functions
are also available to aid the programmer in developing user-friendly dialog
boxes. The Window BOSS is a shareware product. [Ref. 13]

. Imaging Technology ITEX PCplus Large Memory Model (ITEXPCML.LIB)
Library. The ITEX PCplus is a library of image processing and graphics
functions specially written to support the PCVISIONplus Frame Grabber. Only
a few of the functions are actually used in SEMEX and these include setting
up of the frame grabber's control registers and LUTs, reading and writing a
single pixel value, reading and writing the frame memory from and to disk, and
thresholding an image. Details can be found in the ITEX PCplus
Programmer's Manual [Ref. 14].

. Mathworks MATLAB 386. This mathematical programming package is used
to produce the histogram plots subsequent to the ANALYZE stage. A script
file was written to automatically read in a SEMEX data file and plot the
results. It can also plot the Malvern data. This file appears at the end of
Appendix B.

. SEMEX (Scanning Electron Microscope EXtraction) Program is a set of
program modules, written in the C programming language as part of this thesis
work. This program comprises thirty-seven locally-written functions and
handles the six stages required in extracting particle size information. The first
involves setting up the system to ensure correct illumination, camera input gain
and offset, and calibration. The second stage deals with the digitization of
SEM images, cropping the digitized image to the desired area of interest, and
complementing the image, so as to obtain a digitized image of the area of
interest with particles dark against a light background. The third stage employs
thresholding to form a binary image. The fourth and fifth stages involve
particle tagging and particle sizing respectively. H cre, particles are identified
from the background and their x-chord and y-chord lengths and areas are
measured. The final stage merges the data from several images and analyzes
the resulting data. The analysis involves extracting three-dimensional features
from the two-dimensional images. Presently, this last stage has been written to
generate results similar to the Malvern MasterSizer. The latter puts out a
histogram plot of percentage of particle volume against a logarithm scale of the
particle diameters. SEMEX generates the histogram data and makes use of
MATLAB to generate the histogram plots. The source listings for the various

15

modules are found in Appendix B and detailed descriptions are given in

Chapter IV.

16

IV. DETAILED DESCRIPTION OF SEMEX

SEMEX is the name given to the executable file made up of the seven C

language program modules described in the following sections. SEMEX stands for

Scanning Electron Microscope EXtraction. SEMEX was written with the aim of

providing a user-friendly environment which is flexible, yet highly efficient for

digitizing SEM photographic images and extracting particle size distribution data.

Windows (dialog boxes) guide the user through the whole process of setup,

acquisition, processing (more specifically clipping, tagging, and sizing), and analysis

as shown in Figure 5. Generally, SETUP and ANALYZE need only be done once

at the beginning and at the end of a session, respectively. ACQUIRE, CLIP, TAG,

and SIZE need to be done as many times as there are images to extract.

Formatted inputs disallow illegal user responses while extensive error trapping

prevents unintentional user inputs from resulting in fatal problems. A record of each

session's activities is automatically created in an ASCII text file format which can be

reviewed or printed out as a permanent record by any text editor program. The

sessions file uses a filename formed from the current date (i.e., the first three letters

of the month and a two-digit day) with the extension of .ses. In this way, each day's

activities are recorded in a separate file. If more than one session is started in a

single day, the second session will be appended to the end of the first. This prevents

any record from being written over. Alternatively, the user can type in a filename

during setup.

17

SEMEX
Invoked by typing

This is the entry program which calls all SEMEX at the DOS
thMe other modules. prompt.

SETUP This needs only be
This module harid;es the setting up of the run once for every

camera, lights and program defaults. session.

ACQUIRE

This module brings an SEM image into
frame memory from oisl or via a camera.

CLIP

This module converts a gray scale image
into a binary image by a thresholding

process.

_Repeat these
steps for the

TAG rest of the

This module performs object segmentat ion by g

assigning adjoining pixels of a feature with
a unique fid value.

SIZE

This module uses the fid values to find
the area, X-chord, and Y-chord of each

feature which are then saved to a file,

ANALYZE (with aid of MATLAB)
This need only be

This module merges selected data files and run after all images
finds the particle volume distribution which from a rocket burn

can then be plotted by MATLAB. have been processed.

Figure 5. Typical sequence of activities in SEMEX.

18

Figure 6. Block diagram of SEMEX modules (rounded rectangles) and their
functions.

19

Figure 6 gives an overview of the various modules and functions, and the

filenames they are contained in. Detailed descriptions of each of the program

modules, the algorithms used and any trade-offs made follow.

A. PROGRAM MODULES

1. Module MAIN

The MAIN module consists of three functions mnain(), fginitO and

session natne(. Figure 7 gives the algorithms, written in pseudo-code, for the

main(

initialize frame grabber by calling fginito;
blank out image filename;
call sessionnameo) to create sessions filename from current date;
-splav r-r,,p menu of SEMEX options;

accept user response and call respective functions;

return to display popup menu again;
update sessions file with elapsed time;

display sign-off message;

fginit() sessionname()
({

set hardwar. definition; call dos_getdateo) to get current date;
set frame dimensions; call dosgettime() to get current time;
turn frame grabber on; convert month and day to filename string;
initialize registers and LUTs; append file extension ".ses" to string;

select camera input; open session file using this string;
clear frame memory; record current date and time;
select and display frame memory; close session file;
select input and output LUTs; return to main();

return to main();

Figure 7. Pseudo-codes for SEMEX main program main() (top), frame
grabber initialization fginitO (bottom left), and sessions file
naming function session.nameo (bottom right).

functions in this module. All C programs must begin execution with the function

mainO. It ties together all the other modules and functions in a program, and this

is no different for SEMEX. In addition, it initializes all the global variables to their

20

default values. These global variables are used by the various program modules for

range checking and for customizing the SEMEX program to suit user needs.

The function finito initializes the frame grabber by loading the correct

addresses and configuration data. Once done, the frame memory is cleared and the

input and output LUTs selected to prepare the frame grabber to receive digitized

images captured with the vidicon camera. Function session nameO handles the

formation of the sessions filename using the current month and day from the DOS

system (obtained by calling dosgetdateo function), and appends a .ses file extension

to it. However, the user can specify a different filename when inside the module

SETUP. The sessions file records all the session activities for that particular day,

regardless of the number of sessions. Figure 8 shows a typical sessions file.

Opening Session on 26 Feb 1991 at 18:09.
CLIP: Image from Filename: sem02 .1mg

Auto Threshold: 187 User Threshold: 187
TAG: 273 features tagged in 14.2 seconds
SIZE: Vertical scale used: 8.400000 pixels/unit length

Min Length spec: 1 Max Length spec: 100
Sized 273 Features within specifications
Sizing took 10.4 seconds
Conversion constants: Cx-0.141691 Cy-0.119048 Ca-0.016868

AREAM X-chord Y-chord
Max 5.803 12.044 4.167
Min 0.017 0.142 0.119

ANALYZE: Merging data files
Extracting data from SEM02.DAT
274 extracted. Running Total is 273
Total volume of minuscule particles is 3.726466 or 5.25!
Printing results to Feb26.his
Printing MAT-file sem02.mat

SEX was on for 2.4 minutes.

Figure 8. A typical session recorded in the sessions file.

21

2. Module ACQUIRE

The ACQUIRE module is actually a single function acquire() whose

pseudo-code is shown in Figure 9. It accepts one of two sources of image input. The

first makes use of a previously digitized image stored on disk. The second allows for

acquire (

open dialog box;
if disk image desired

call SEMIO function getim();
else

display live video;
if default selected

use default

else
interac " adjust gain;

if default se cted
use Iefault offset;

else
_nteractively adjust offset;

snap , single video frame;
trar-fer synchronization to frame grabber;
dp,41ect camera to prevent interference;
-rop left and right margins;
complement digitized image if desired by calling ITEX PCplus function complement);
if image is to be saved

append gain, offset and margins to comments;
call SEMIO function putim);

update sessions file;
close dialog box;

return to main(;

Figure 9. Pseudo-code for image acquisition function acquireo.

acquisition of a live image from the vidicon camera. If SETUP has not been run,

acquire() will allow the gain and offset of the camera input to be interactively

adjusted to obtain a high contrast image. After positioning the object image in the

field of view of the camera, a single frame can be acquired (a process called

snapping a frame by Imaging Technology). The camera input is then disconnected

by software to reduce the jitter (caused by synchronization conflicts between the

vidicon camera and the frame grabber) which can corrupt the digitized image. The

22

acquired image is 512 pixels wide by 480 pixels high with each pixel represented by

8 bits, thus allowing for 256 shades of gray.

Once acquired, the digitized image can have its left and right margins

cropped. This will eliminate any edge effects and textual information that could

interfere with the extraction of particle data. Next, the image can be complemented

to produce a final image where particle features are dark and the background light.

This is carried out by an ITEX PCplus function complenzentO which performs a one's

complement (one bits become zeros and vice versa) on every pixel in the image.

Finally, the image can be saved to disk or left in the frame grabber's

memory (frame memory) for further processing. If the image save option is

exercised, program control is transferred to the putimo function in module SEMIO

where a filename is requested. An extension of.img is automatically appended. The

user will be asked to supply a line of comments which will be stored in the image

header, together with information on the gain and offset of the camera input,

margins set and the vertical scaling factor. This information will be displayed

together with the digitized image whenever it is recalled by the other modules. The

stored margins are used by the modules to define the area of interest in the digitized

image. This can result in an improvement in performance, as the whole frame need

not be processed. The vertical scaling factor provides the SIZE module with the

conversion factor between pixels and some unit of measure (e.g., microns).

23

3. Module CLIP

The CLIP module consists of four functions namely, cliprnainO, clip(o,

autoclip) and findthd(. Their pseudo-codes are shown in Figure 10.

clipmain() clip()
({

open dialog box; start repetition

open session file; display clipped image;

if disk image desired interactively get threshold;

call SEMIO function getim(); end repetition if user satisfied;

else supply threshold to calling program;

use image in frame memory;
call autoclip() to threshold the image;
call clip() to modify the threshold;
update sessions file; autoclip()
close sessions file; {

display options and get user response; define regions to be sampled;

if image to be restored assume threshold is peak white initially;

linearize output LUT; for each region

else call findthd() to find new threshold;
map output LUT into frame memory; use the minimum threshold for all regions;

if image to be saved to disk return to clipmaino);
call SE24IO function putim();

close dialog box;

return to main();

findthd()

within each region

determine pixel value;
if pixel value is more than mid-gray

compare it to existing threshold,
take the minimum of the two and

assign it as the new threshold;
return to autoclipo;

Figure 10. Pseudo-codes for clipmainO, interactive clipping clip() (top
right), automatic clipping autoclip() (center right), and
background threshold determination findthdO.

Function clipmaino) is called by main() and uses the other functions in this

module to convert the digitized gray scale image to a binary two-tone image by a

process called thresholding. The gray scale image can be retrieved from the disk, or

the existing image in the frame memory, acquired previously, can be used. The

24

IEEE Standard Glossary of Image Processing and Pattern Recognition Terminology

(IEEE Std. 610.4-1990) defines thresholding as

The process of producing a binary image from a gray scale image by assigning
each output pixel the value 1 if its corresponding input pixel is at or above a
specified gray level (the threshold) and the value 0 if the input pixel is below
that threshold.

In mathematical terms, for a threshold T, the process can be represented

as

p(i'j) 0 p(i,j) < T, (1)

255 p(i,j) > T.

where p(i, j) represents the gray scale value of the pixel at column i and row j. The

gray scale value 0 represents peak black while the value 255 represents peak white.

The purpose of thresholding is thus to produce a binary image where the

features are black against a white background. This is critical to the subsequent

stages of processing. To ease the user workload, autoclipo and findthdO are called

to automatically determine an estimate of the optimal threshold level. The algorithm

assumes that the particle-to-background contrast is good and that the particles are

dark against a light background. Given these two conditions, the algorithm examines

six small regions around the edges of the image and one more in the center to

determine the background gray scale levels. The location and size of the regions

have been determined empirically, and is based on the location of the lighting. Pixels

with gray scale levels lower than mid-gray (pixel value of 128) will be skipped over

as they are assumed to be part of a particle and not the background. The darkest

of the background levels obtained, corresponding to the lowest gray scale value for

25

all the regions, is used as the threshold. Sampling over several regions helps to

account for any non-uniformity in illumination. This algorithm tries to ensure that

background pixels do not accidentally become converted to particle pixels. While the

algorithm is not robust, it was found to work satisfactorily for images satisfying the

above two conditions. The processing time required to determine the automatic

threshold level is less than one second. Once the threshold level is determined, a

ITEX PCplus library function, thresholdO, is called to perform the actua! thresholding

process.

As the automatic thresholding algorithm assumes a priori knowledge of the

image, manual intervention is allowed using the clipO function. This allows the

current threshold to be interactively changed to fine tune the image. Changes made

to the image are constantly updated to the video monitor.

The resulting two-tone image can either be saved to a disk file for later

processing, carried forward to the next stage of processing, or reverted to its original

gray scale form to start over. Clipped files have a default file extension of .iIl.

Typically, the image is not saved but is kept in frame memory. A SETUP option

allows the subsequent stages to be activated automatically to reduce user intervention

and increase throughput.

4. Module TAG

The TAG module consists of the seven functions shown in Figure 6 earlier.

Collectively, these functions determine whether a particle is made up of an isolated

pixel or a group of adjacent pixels. The general term for this process of screening

26

the image for objects (features or particles) is called image or object segmentation.

The IEEE Std. 610.4-1990 defines image segmentation as

The process of dividing an image into regions for the purpose of object
extraction.

tagmain() tag()

open a dialog box; determine maximum feature size liaits;
open sessions file; start timer;
if disk image desired tag the first row of pixels by calling tagrowO();

call SEMIO function getim(); tag subsequent rows by calling tagrowso);
else determine total features tagged;

use image in frame memory; check search winuow size by calling checkmerge();
tag image by calling tag(; check for joined features by calling tagmerge();
close sessions file; display final feature count;
if tagged image to be saved display time elapsed;

call SEMIO function putim(; update sessions file;
close dialog box; update frame memory to make process permanent;
return to main(); return to tagmainC);

I)

Figure 11. Pseudo-code for TAG algorithm. Left column shows tagmaino)
while right column shows tago.

Image segmentation or tagging, as it is subsequently referred to in this

thesis, is performed in two stages. Figure 11 shows tagmaino calling tag() to scan the

clipped image previously stored in the frame memory (or retrieved from a user-

specified .iml disk file). Each non-background pixel is assigned with a feature

identification number (fid). Isolated pixels are assigned unique numbers while

adjacent pixels share the same number. Essentially, the fid number identifies pixels

belonging to a single feature or particle.

The actual tagging is done by two functions tagrowO() and tagrows() which

operate on the first row and the subsequent rows in the frame, respectively.

Figure 12 shows the pseudo-code for the two functions. Essentially, the functions

scan a row from left to right, skipping white pixels which are assumed to be part of

the background. When a black pixel is detected, tne pixel above is examined. If that

27

tagrowOO)

for each pixel in the first row of the image
skip to next pixel if present pixel is background;

if left pixel occupied
adopt its fid value;

else must be new feature

assign new fid value;
return to tagG;

tagrows()

for each row of pixels in the image
for each pixel in the row

skip to next pixel if present pixel is background;

if left or above pixel occupied
adopt its fid value;

else must be new feature
assign new fid value;

if subsequent adjacent pixels connected
assign same fid value to these;

return to tag();
I

Figure 12. Pseudo-codes for tagrowO0 and tagrowsO algorithms used for
differentiating features from background in the first and
subsequent rows, respectively.

pixel is not white, it already would have been assigned an fid value and the current

black pixel is rewritten with the fid of the pixel above. In addition, the preceding

pixel in the row is also checked and, if it has been assigned an fid value, this is also

changed. This effectively identifies adjacent pixels as being part of the same feature,

as long as the features are convex polygons (that is, there are no jagged edges caused

by clusters of particles).

Because only 8 bits are allowed for storing a gray scale value, this allows

for only 256 values. Allocating value 0 to peak black and value 255 to peak white

leaves only 254 values. This means that only 254 particles can be uniquely identified.

To overcome this limitation, the frame area is windowed into one or more

rectangular regions. A simple function checkmergeo (see Figure 13) uses the initial

number of features counted by tagrowO0 and tagrowso to determine the dimensions

28

checkmerge()

determine safe feature size within a group;
if feature size is larger than safe size

warn user;
prevent larger features from being tagged;

return to tag();

tagmerge()

for each row in the image

assign row search limits;
for each pixel column in the image

get pixel value of current pixel;
get pixel value of pixel above;

if either is background or

if they are part of the same feature
no action required, skip on to next column;

else
adjoining pixels have different fids and need to be merged;

assign column search limits;
for each row within the search limits

for each pixel column within the search limits

if pixel is part of the current pixel
re-assign the value above to it;

return to tag);

Figure 13. Pseudo-codes for checkmergeo and tagmergeO used for checking
the number of features in a merging window and for carrying out
the merging, respectively.

of this sizing window. The formula used is given by

SAFESIZE = inti 0 + 2] (2)

where SAFESIZE is the allowable size of the feature. The value 480 represents the

number of rows in the frame and 255 is the number of unique fid values available

plus one. The pseudo-function into takes the integer portion of the quotient. For

example, if the feature count is 254, the denominator will yield 2 and SAFESIZE

would evaluate to 240 which is half the frame height. The sizing window is twice this

value which implies that the whole frame is used. Features having a vertical length

greater than SAFESIZE will be partitioned into two. If this happens, the program

29

will warn the user to rerun the TAG module after specifying that these larger

features be excluded. Alternatively, the user may attempt to use a lower threshold

level to reduce the number of features if the image is suspected to be noisy or the

background is heavily textured. For any image, the maximum feature size should not

be greater than a quarter of the image frame area (i.e., 256 x 240 pixels). Features

within different regions may have the same fid number because, in addition, they are

assigned a different group identification (gid) number to distinguish between them.

After the first pass described in the preceding paragraphs, another pass is

taken through the whole image to merge joined features. This is carried out by

tagmergeO and is necessary because the first pass assumes that all features are convex

polygons. However, if some of the particles are overlapping or have irregular cross-

sections, then they would be assigned different fid numbers although they are joined.

Consequently, these non-convex polygons have to be merged together and assigned

a common fid number. The number of features merged will be highlighted to the

user together with the number of features identified or tagged. The latter can be

used for verification of the TAG algorithm with the SIZE module described in the

next sub-section. Both should yield the same feature count.

A limitation of the present algorithm is that border regions are ignored.

This means that particles truncated by the edge of the image are treated as if they

were complete particles. This may distort the actual distribution of particle sizes.

This generally affects a small number of particles and is not expected to give rise to

large errors in the result. However, should this error be deemed significant, the

30

usual practice is to define an area of interest somewhat smaller than the image such

that a border exists. The border must be as wide as the largest particle. Particles

lying on this border, and not truncated by the edge of the frame, will be tagged while

those outside the border will be reset to the background color. In this way during

SIZE, truncated particles will not be sized and hence do not affect the distribution.

While this would yield more accurate results in terms of classifying particles, the

smaller area of interest would yield a smaller sample population and more images

would have to be used to compensate for this. In addition, it would not be practical

to incorporate a border when particles could be as large as a quarter of the image.

The tagged image can be saved to disk. It will have a default file

extension of .ir2.

5. Module SIZE

The SIZE module consists of four major functions namely sizemain(,

sizeO, pixelsizeO, and outdatao. Collectively, they perform the function of

determining the area and physical dimensions of the particles. The main function

sizemaino allows for a stored tagged image to be retrieved, calls sizeo to coordinate

the sizing process, and, finally, calls outdatao to tabulate and save the results. The

pseudo-codes for sizemaino and sizeO are shown in Figure 14.

The function sizeO dynamically allocates storage arrays for particle areas,

horizontal particle lengths (x-chords), and vertical particle lengths (y-chords). These

arrays are indexed by the fid value of the feature whose dimensions are being stored.

The function also keeps track of the processing time taken to size the image. Actual

31

sizemain()

open a dialog box; size()
open sessions file;
if disk image desired determine scale factor;

call SEMIO function getim(); determine feature size limits;
else check for sufficient memory;

use image in frame memory; start timer;
size image by calling sizeo); size the image with pixelsizeo);
if results are to be saved display time elapsed;

call outdatao); return to sizemaino;
close sessions file;
if sized image to be saved

call SEMIO function putimo);
close dialog box;
return to maino);

Figure 14. Pseudo-codes for SIZE module functions sizemainO (left) and
size() (right).

sizing begins when size() calls function pixelsizeO to carry out the algorithm given in

Figure 15.

Starting with the top left corner of the image, each row of pixels is scanned

for the fid numbers previously assigned by tago. Three registers are used for

tracking the current feature area, feature x-chord, and y-chord. These are initialized

to zero whenever a feature is first found. When pixels are found with an fid value

corresponding to the current feature being sized, these pixels are reset to peak black

to prevent them from being recounted. At the same time, the area and chord

registers are updated. When the end of a feature is detected (no subsequent rows

having the same fid value as the current feature being sized), these registers are

stored into the respective storage arrays for later retrieval by outdataO. Statistics like

the largest and smallest features are also determined, together with any features

being rejected for failing to satisfy the size limits specified during setup. These size

restrictions can be used to filter out background noise or undesirably large features.

32

pixelsize)

for each row in the image
assign row search limits;

for each pixel column, in the image
get pixel value of current pixel;
if pixel value is backgrou,d or has already been sized

skip on to next column;
else

pixel is part of a feature yet to be sized;

assign column search limits;
for each row within the search limits

for each pixel column within the search limits
if pixel is part of the current feature

increment feature area;
increment horizontal feature length;

tag the pixel as sized;
if horizontal feature length is zero

end of feature is reached;
go size next feature,

else
update maximum feature length;

teset horizontal feature Length;

increment vertical feature length;

save vertical feature length;
save feature area;
reset vertical feature length and area;
determine min and max feature dimensions sized so far;
determine smallest and largest feature sized so far;

check if any size limits exceeded;
display any rejects together with number of features sized;
update sessions file;

return to sizemain();

Figure 15. Pseudo-code for function pixelsizeO which scans each pixel in the
image and identifies it as part of a feature.

The above procedure takes place inside a sizing window determined during

setup (or modified by checkmergeO as described in the earlier sub-section). The

window must be as large as the largest pixel. This sizing window is moved from left

to right, top to bottom over the whole frame. If the sizing window is large, a

considerable amount of computation time is required to scan the area in the sizing

window for pixels belonging to a particular feature. A performance enhancement has

been incorporated by detecting the end of the feature and aborting the search for

more pixels belonging to this feature. For small features, this results in a significant

improvement in performance, as is shown in the next chapter.

33

Up to this point, all processing has been in terms of pixel dimensions to

avoid floating point operations. For the vidicon camera used, a pixel is not square

but has an X:Y aspect ratio of 1.2:1. To convert the pixel dimensions to microns

requires the vertical scale factor which was determined during setup. The conversion

is done in outdataO, shown in Figure 16. It uses the stored pixel values of the x-

chords and y-chords and the total pixel area of each feature, and converts these to

microns and square microns respectively. The results are tabulated on the computer

monitor and saved to a .dat data file for subsequent analysis.

outdata(

open a dialog box;
calculate conversion factors;
request for data filename;
open data file;
display feature horizontal and vertical dimensions;
display feature area;
write the same results to data file;
close data file;
display min and max feature sizes for the whole image;
display smallest and largest feature area for the whole image;

update sessions file;
close dialog box;
return to sizimain();

Figure 16. Pseudo-code for function outdataO which tabulates the feature
sizes and writes it to a data file.

6. Module ANALYZE

Many methods exist for analyzing particles which are normally distributed

[Ref. 15]. However, few exist for multi-modal analysis. For this application,

the algorithm is designed to collect all the data files specified by the user, to extract

the area data from them, and then to calculate the equivalent diameter and volume

of a sphere. The end result of ANALYZE is a histogram of the sample population.

34

These steps are accomplished by the functions analyzeO, merge-dataO,

extractdataO, and histo_volO. The equivalent spherical volumes are used because

a large particle has a much greater impact on the plume characteristics than many

small ones. Referring to Figure 17, analyzeO opens a dialog box and the sessions file

and calls the other three functions. The function merge datao builds up a list of data

filenames by prompting the user with the name of each data file in the current

directory and asks whether each should be used. The function extract-dataO then

begins extracting the area from each of the data files. The user can choose between

using the calculated area (AREA_C) or the measured area (AREAM). The

function histovolO takes the areas and calculates the equivalent spherical diameters

and volumes. Although the particles may be irregular in shape, the use of equivalent

spheres facilitates the plotting of histograms against a single size dimension (particle

diameter). The function then outputs the data into a .his histogram data file. This

file can be read out or printed with any ASCII text editor program.

An option allows the user to save the same histogram data into a

MATLAB-compatible .mat file. This makes use of a function called savemato

provided by MATIAB and has been locally modified for SEMEX. The histogram

data can be plotted using a MATLAB script file called SEM.M. This file reads in the

.mat file and plots a histogram of percent of total volume against a logarithmic scale

of particle diameter. The listing for SEM.M is found in Appendix B. To enable

comparison with the Malvern MasterSizer [Ref. 8], the same upper and lower limits

for each bin is used. The only difference is that SEMEX has 38 bins as against only

35

analyze()

open a dialog box;
open the sessions file;

call mergedata() to merge data from different data files;
call histo vol() to calculate volume and histogram the result;

close session file;
close dialog box;
return to maino;

merge_data()

use dos findfirst() to get first data file and its creation date;
display file and date created and ask user whether to include this file;
if user response is positive

update session file with datafile name;
allocate memory for the list;

add filename to list;
find the rest of the data files using dos findnext);
repeat the ibove steps until no more date files found;

allocate memory for data array;
call extractdatao) to extract area from data file;

extractdatao)

for each of the selected data files in the list

open the data file;
read area into data array;
repeat until end of file;

close data file;

erase the list;

histovol()

determine bin limits;
allocate memory for volume and diameter arrays;
for each particle in the data array

calculate the equivalent diameter assuming a circle, given area;
calculate the equivalent volume assuming a sphere, given area;

accumulate total volume;
sieve the volumes and collate into the correct bins;

update sessions file with particles outside the defined sizes;
print out results to histogram file;
if desired, a MATLAB .mat file can be created for SEM.M to plot the histogram;
de-.llocate memory thus erasing all the arrays;

Figure 17. Pseudo-codes for the ANALYZE module showing, from top to
bottom, analyze(, mergedataO, extract-data(, and histo volO.

31 for the Malvern MasterSizer. The latter can only size down to 0.5 Am while

SEMEX has a resolution down to 0.125 Am. SEM.M allows the results from the

Malvern MasterSizer to be simultaneously plotted for comparison. These plots can

be seen in the next chapter.

36

7. Module SETUP

The module SETUP consists of two functions check equipmentO and

setup(). The first helps the user to set up the camera and light fixtures (refer to

Figure 18), while the second is used to customize the SEMEX program.

check_equipfnent(1
open dialog box;

if changes required to equipment setup
acquire live video;
interactively set video input gain;
interactively set offset;
digitize a single video frame;
synchronize to frame grabber for stability;
deselect camera to prevent interference;
call measure lineo) to measure 5 micron reference line;
repeat measurements as desired;
complement image to get dark features on light background;
update frame memory to record changes;
call ITEX PCplus threshold() to threshold image at maximum level;
call clip() to interactively threshold the image;

repeat whole process if desired;
open sessions file;
update setup parameters;
close sessions file;

close dialog box;
return to setup();

Figure 18. Pseudo-code for the function check_equipmentO which aids in
the physical setup of the camera and the lights.

To set up the camera and light table, the function checkequipmento turns

on the frame grabber and begins acquiring live video through the camera. The user

can manually focus the vidicon camera and set its aperture. At the same time, the

gain and offset of the camera input can be interactively set, and the photographic

image aligned. In order to fit the 4:3 frame aspect ratio of the camera, the SEM

photograph has to be rotated onto its side such that the textual information is to the

right. Having done this, a single frame of the image is digitized.

Once acquired, measurelineo is called to allow features on the digitized

image to be repeatedly measured with the aid of a graphics cursor. The graphics

37

cursor, drawn and erased by putcursorO and unputcursorO, respectively, is moved

around on the video monitor by using the arrow keys. The function chkkey()

translates these keystrokes into x and y values which put lineo and unput lineO use

for drawing and erasing lines. The lines are measured by calc_lineO and these

measured lengths are recorded in the sessions file. Since SEM images have a 5 um

reference line on the imagc, measurement of this line allows for size calibration of

the system. The function measurelineo assumes that this reference line is vertical

and proceeds to calculate the vertical scaling factor to be used for converting pixels

to dimensional lengths. Figure 19 shows the pseudo-code for this function. The

graphics cursor and line manipulation functions are shown in Figure 20.

measurelineo)

display graphic cursor using putcursor(;
await pressing of cursor keys;
remove graphic cursor using unputcursoro);
decode key pressed using chkkeyo;

if valid cursor key pressed
display graphic cursor at new location;

else
repeat above sequence;

await key pressed to get second position;
remove graphic cursor using unputcursoro;
decode key using chkkey();
if valid cursor key pressed

put graphic cursor at new location using put_cursoro;

draw line to new location using put line();

calculate length of line using calc line();
if not zero length

calculate scaling for a 5 micron reference line;

open sessions file;

update sessions file;
remove line using unputline(;
remove graphic cursor using unput cursoro;
close sessions file;

else
go back to wait for second position;

return to checkequipment);

Figure 19. Pseudo-code for the function measure lineo used to determine
the vertical scaling factor of a 5 gm line in the SEM image.

38

put cursor(

determine top- and left-most pixels, given the center;
save pixel values under the graphic cursor;
if center pixel value is greater than mid-gray

draw black graphic cursor;

else
draw white graphic cursor;

return to measure line();

unputcursor)

determine top- and left-most pixels, given the center;

restore zriglnal pixel values thus erasing the cursor;

return to measure lineC);

putline(

If center pixel value is greater than mid-gray
use black pixels to draw line;

else
use white pixels to draw line;

if horizontal line is longer than vertical
save horizontal pixel values under the line;

draw a horizontal line;
else

save vertical pixel values under the line;
draw a vertical line;

return to measurelineo;

unputlineo)

if horizontal line is longer than vertical
restore horizontal pixel values under the line;

else

restore vertical pixel values under the line;

return to measure line);

chkkey()

test for valid cursor keys;

if either arrow keys is pressed

increment/decrement x or y respectively;
if Home. End, PgUp or PgDn key is pressed

step x or y respectively (step size is 10 by default);
return to measureline();

calc line()

if horizontal line is longer than vertical

return length of horizontal line to measurelineo);
else

return length of vertical line to measurelineo;

Figure 20. Pseudo-codes for functions putcursorO and unputcursor()
which manipulate the graphics cursor while functions putlineO
and unputlineO deal with lines.

39

Next, the digitized image can be complemented (to produce an image

where particles are dark against a light background) and clipped. Clipping is carried

out within SETUP by calling clipo, described earlier. This causes pixels with the

same or lower values to be displayed as black, thus allowing the user to visually

gauge the uniformity of the background. Figure 21 shows two images with varying

uniformity in illumination.

Figure 21. Samples of clipped images showing the non-uniformity of the
illumination. Darkened areas have the same or lower pixel
values.

The left image is poorer than the right due to the poorer location of the

lights. It is important that the illumination be evenly distributed so that the

background intensities do not differ significantly over the image. One way of

ascertaining this is to use a blank sheet of paper in place of the SEM image. The

digitized image is then clipped with the threshold at maximum (threshold value 255).

This should yield an almost black image initially. Decreasing the threshold will cause

increasing portions of the image to turn white. The background should turn from

completely black to completely white in about 50 levels of gray. If it takes more than

40

this or if the blacks appear blotchy, the illumination is uneven and needs to be re-

adjusted.

If the initial clipped image is not almost completely black, it indicates that

the full dynamic range of the contrast has not been exploited. The offset may need

to be changed and then this whole process repeated until the results are satisfactory.

The second function setupo in the SETUP module allows the user to

configure the SEMEX system, thereby streamlining the SEM extraction process.

Figure 22 shows the pseudo-code for setup(. Various default parameters are

setup()

check camera and lighting by calling checkequipnento;

open dialog box;
display current default settings;

accept user changes;

display new default settings;
close dialog box;

return to main();

Figure 22. Pseudo-code for the function setup() in the module SETUP.

displayed and can be modified to enhance the accuracy of the extraction. The

processes are automated to reduce user workload. Several flags can be defined

which cause program flow to be altered, thus changing the appearance of the

program and the amount of user intervention. In addition, a sessions file can be

specified to record session activities and to store intermediate results, thus reiieving

the user from the need to write notes. A permanent record of each session can thus

be kept. Figure 23 shows the SETUP dialog box with all the default parameters

which the user can alter to tailor the SEMEX program.

41

SETUP DEFAULTS

GAIN LEVEL 0 Use Default[Y,N] N
OFFSET LEVEL 5U- Use Default[Y,N] N
LEFT MARGIN : 0 Use Default[Y,N] Y
RIGHT MARGIN :5- Use Default[Y,N] : N
Y-SCALE FACTOR : 1.000 Use Default[Y,N] Y
Max Feature Size 1 100
Min Feature Size I 2 Use Defaults[Y,N: Y
Max Feature Count : 20O- Auto-Allocate Memory[Y,N]: Y

ALL: Enable HELP screens [Y,N] : Y
SEMEX: CLIP, TAG and SIZE without asking[Y,N]: Y
ACQUIRE: Complement Image without asking[Y,N]: Y
CLIP: Load RAW Image without asking[Y,N : N
TAG: Load CLIPPED Image without asking[Y,N] : N
SIZE: Load TAGGED Image without asking[Y,N] : N
Session Filename: Febl9.ses

Figure 23. SETUP dialog box showing default parameters which the user can
change to customize SEMEX.

8. Module SEMIO

The SEMIO module consists of several globally-used functions getinO,

putimO, and chkextO, which are called by most of the other modules. It performs

such functions as reading a disk image file into frame memory, writing out an image

stored in frame memory to disk, and checking the filename extension. Image files

are stored in a compressed format to reduce the disk storage space required for each

image. However, this has a small penalty on the time required to read and write an

image file (one or two seconds). Figure 24 shows the pseudo-codes for the three

functions. The functions make use of two ITEX PCplus functions readimO and

saveinO to actually perform the image read and save operations, respectively.

42

getim()

call chgext() to append default file extension to filename;

prompt user with filename;
get user response;
get image and comments from disk using ITEX PCplus library function readim();
if error detected

suggest trying again with new filename;
display image on monitor;

display comments in dialog box;
extract margins and scaling factor from the comment line;
return to calling program;

putim()

call chgext() to append default file extension to filename;

prompt user with filename;
get user response and comments;
append gain,offset, margin and scaling factor to comment string;
save image and comments using ITEX PCplus library function saveimo);

if error detected
suggest trying again with new filename;

return to calling program(;

chgext(

determine the start of the file extension;

discard old file extension;
append default file extension;
return to calling program;

Figure 24. Pseudo-codes for the SEMIO module. Functions getimO and
putimO handle image transfers to and from disk while chgexto
is used to set the default file extension.

The functions also handle the insertion of image parameters into the image

header. Information like the gain, offset, margins and the scaling factor used in

creating the digitized image are stored, together with any comments the user may

wish to include. These parameter will be automatically retrieved when the image is

brought in from disk. This ensures that no useful data is lost and it also reduces the

setup time. Mundane tasks such as checking the existence of a filename and

availability of disk storage space are also carried out by the functions in SEMIO.

43

V. RUNNING SEMEX

A. SEMEX SETUP PROCEDURE

SEM photographic images first have to be digitized and stored in the frame

grabber's memory before any processing or extraction of information can be started.

The camera and lighting setup is critical for obtaining a good digitized image. Using

a 28 mm focal-length lens, the vidicon camera has to be mounted at a height of

approximately 13 inches from the SEM photograph on the light table. A transparent

glass plate is placed over the photograph to keep it flat. After ensuring that the

video cables have been properly routed, the IBM AT is powered up and SEMEX

started by typing SEMEX at the DOS prompt. A windowed menu like the one

shown in Figure 25 will appear. Pressing a number will cause a corresponding

selection to be highlighted. Alternatively, the arrow keys can be used to make a

selection.

Once SEMEX has been started up, the first thing to do is to run SETUP by

pressing [Enter] at the main menu prompt J. Setup SEMEX. The setup procedure

consists of five steps:

1. Initial alignment and focusing.

2. Setting camera input gain and offset.

3. Determining the system scaling factor.

4. Adjusting the illumination.

44

S E M E X
SEM Extraction Program

Naval Postgraduate School

1. Setup SEMEX
2. Acquire Image
3. Clip Image
4. Tag Features
5. Size Features
6. Analyze Features

Use cursor keys to select
Press [Enter] to execute
Press [Esc] to quit

Figure 25. SEMEX main menu showing the six options.

5. Verifying and changing system defaults.

The detailed procedures are given in the following sections.

1. Initial Alignment and Focusing

Running SETUP causes another window to appear over the main SEMEX

window. A prompt will appear asking whether the user wishes to set up the camera

and lighting. Pressing any key other than 'N' or 'n' will select the default answer

of 'Yes' and this turns on the camera. A digitized image of the SEM photograph

can now be seen on the video monitor. Rotate the photograph counter-clockwise

such that the aspect of the photograph is the same as the video monitor, with the

textual information on the right. Adjust the height and focus of the camera so that

the maximum area of the photograph can be seen without borders. The 5Mm

45

reference line and part of the textual information on the photograph should also be

visible on the right edge of the video monitor. Figure 26 shows the orientation of

a typical image.

Figure 26. Digitized SEM image showing the orientation of the 5,4m
reference line and other textual information.

Ensure that the image is in focus. Once this is done for one photograph,

the height and focus of the camera need not be adjusted again unless the setup is

disturbed or dismantled. The photograph, the lens, and the glass plate should be

dusted to prevent dust particles from being digitized.

2. Setting Camera Input Gain and Offset

The program will next ask the user to adjust the gain of the camera input;

initially, the gain is set at maximum (value 0). The user can interactively alter this

gain setting or, alternatively, adjust the aperture of the lens. A setting of gain

value 0 at f/4 was found to be satisfactory. Pressing [Enter] moves the program on

to adjust the offset. Again, the user can interactively change the offset or it can be

46

left at the default of 60. In general, this value should give the image on the video

monitor good contrast.

3. Determining the System Scaling Factor

The vertical scaling factor can be determined by measuring the length of

the 5 pm line located at the top right edge of the video monitor with the graphics

cursor (a small cross-hair) located nearby. The cursor can be moved using the arrow

keys for single pixel movements in either of four directions. For faster movement

of the cursor, the [Home], [End], [PgUp], and [PgDn] keys can be used to move left,

right, up, and down respectively, in steps of ten pixels. Pressing [Enter], when the

cursor has arrived at one end of the 5 gm line, acquires the point. Next, move the

cursor to the other end of the line and press [Enter]. This will cause the graphics

line to disappear and the measured length in pixels will be displayed on the computer

monitor, together with the vertical scaling factor (see Figure 27). If desired, other

features can be measured. However, it should be noted that the scale factor from

the latest measurement will be stored. This factor can also be changed in the SETUP

screen.

4. Adjusting the Illumination

The placement of the lamps is crucial for obtaining even illumination.

After visually determining that there is no glare or reflection from the lamps or

overhead lighting, an image should be captured by pressing the spacebar. This

causes the live video mode to be stopped and a single frame acquired. Press the

[Enter] key if the image appears satisfactory or press the spacebar again to replace

47

ACQUIRE IMAGE - SNAP MODE

Position cursor at first point
using ARROW keys. Press [ENTER] when done
Coordinates: X1: 456 YI: 70

Stretch line to second point
using ARROW keys. Press [ENTER] when done
Coordinates: X2: 456 Y2: 112

Feature is 42.0 pixels long.
For 5 micron vertical line,
Vertical Scale factor is 8.4000 pixels/micron

Press Any key when done

Figure 27. Measuring a line during SETUP. This determines the vertical
scaling factor.

the old image with another digitized snapshot of the photograph. Next, complement

the image if particles are white against a black background. The program then

continues by clipping the image at threshold value 254 as shown in Figure 28.

ACQUIRE IMAGE - SNAP MODE

Reduce to gauge Lighting Uniformity

THRESHOLD LEVEL: 254

Use [+] and [-) keys to adjust

Press [ENTER] when done

Figure 28. Adjusting the threshold level in SETUP to determine the
uniformity of the illumination.

48

This should ca"use the whole image to appear almost black. If this is not

the case, the offset may have to be changed. The user should use the [-] key to alter

the threshold level until the background starts to turn white. If the photograph has

been evenly illuminated, the background should turn white evenly. If the

illumination is uneven, the background will appear blotchy. Press [Enter] to quit.

This process can be repeated to re-adjust the lamp positions and camera input offset

for optimal illumination and image contrast. An example of good even illumination,

achievable with the current setup, is shown in Figure 26.

5. Changing System Defaults

The last step of SETUP is to verify and, if necessary, to allow the user to

change the defaults that SEMEX and its modules will use. The defaults are shown

in Figure 23. The user can sequence through the defaults, using the up and down

arrow keys. If no changes are necessary, the user can simply press [Esc] at any point

to terminate SETUP and return to the main menu.

B. IMAGE ACQUISITION PROCEDURE

Select 2 or move the cursor to 2. Acquire I age from the SEMEX main menu.

If the gain and offset have been adjusted during setup, then there will be no prompts

to adjust them here in ACQUIRE. If the user has elected to use a disk image, a

dialog box like the one in Figure 29 will appear asking for the image filename.

Upon retrieving the file, any comments embedded in the image header will be

displayed. The program will prompt to allow the left and right margins to be

49

cropped by pressing the spacebar, so as to remove any artifacts or textual information

(see Figure 30). Press the [Enter] key when done.

IMAGE ACQUISITION

READ IMAGE FROM FILE
Filename: test .img
COMMENTS:
SEM 00001 from burn taken on 25 Sep 90
Gain= 0; Offset= 60; Margins= 0,460;
VSCALE= 8.400

Press any key to continue

Figure 29. Acquiring a stored image into the frame memory. When the
image is fetched from disk, the comments stored in the image
header will be displayed.

IMAGE ACQUISITION1

Press [SPACEBAR] to crop image
one vertical line at a time

Right margin: 465

When done, press [ENTER]

Figure 30. Cropping the right margin of the image in ACQUIRE. This is

to remove the textual information on the image.

If the features appear white against a dark background, press [Enter] to

complement the image, else type 'N' or 'n' to leave the image unchanged. The

50

user can then choose to save the image in a disk file or leave it in frame memory.

Choosing the former will bring the user back to the SEMEX main menu after

supplying the image filename and any comments. The program will automatically

insert the image parameters (gain, offset, margins and scale factor) into the image

header. The sessions file is also automatically updated.

C. IMAGE PROCESSING PROCEDURE

Image processing inside SEMEX consists of three steps:

1. A threshold is applied to the image to convert it into a binary image where
particles are peak black and background pixels are peak white.

2. The image undergoes object segmentation whereby objects (i.e., particles) are
discriminated from the background. Each object is given a unique identification
number in the form of a gray scale value.

3. Each object is sized by measuring all pixels with the same identification
number and converting to microns.

The details of these procedures are given below.

1. Thresholding with CLIP

The thresholding function is selected by typing 3 on the main menu which

highlights the option 3. Clip Image. Pressing [Enter] activates the module CLIP.

To threshold the digitized image already on the video monitor, the user simply

presses [Enter] at the prompt 'Read from disk file [N]?'. The program then begins

its automatic threshold level determination. Almost immediately, the clipped image

is displayed on the video monitor. The user can choose to vary the threshold (to fine

tune the thresholding process) by using the [-] or [+] keys (see Figure 31). The

threshold value is displayed, as well as recorded in the sessions file. A copy of the

51

clipped image can also be saved to disk, although this is not necessary (see

Figure 32). The default file extension is .iml for a clipped image.

CLIPPING IMAGE

Determining threshold...
THRESHOLD LEVEL: 171

Use [+] and [-] keys to adjust

Press [ENTER] when done

Figure 31. Clipping image using the automatic threshold which the user
can subsequently change using the [+] and [-] keys.

CLIPPING IMAGE

1: RESTORE image to original and abort
2: EXIT without saving
3: SAVE the modified image

Select option by NUMBER [3]:

Figure 32. Screen for selecting the outcome of the clipped image. Option
3 is the default which can be invoked by pressing [Enter].

2. Image Segmentation using TAG

Image segmentation is performed by the TAG module. This module may

be automatically invoked after CLIP completes, or it can be selected by pressing 4

or moving the cursor to 4. Tag Features. Features are tagged in two passes. The

52

first scans the clipped image and tags each pixel with an identification number (fid).

Isolated pixels have unique numbers while adjacent pixels share the same number.

Essentially, the fid number identifies pixels belonging to a single feature. The second

pass searches for joined features with different fid numbers. These are merged,

leaving only one fid number for all pixels belonging to that joined feature. Figure 33

shows the TAG screen after it has completed tagging an image.

TAGGING IMAGE
TAGGING FEATURES in Progress

190
Largest permissible feature is 240 pixels
Combining joined features...

6
FEATURE COUNT: 184

Elapsed Time: 16.0 seconds

Save image to Disk File [N]?

Figure 33. TAG screen showing the number of features, the number
merged and the final count. The final prompt requests
whether to save the tagged image.

3. Feature Sizing using SIZE

To run the SIZE option, the user selects 5 to highlight the option 5. Size

Features. SIZE could be also automatically invoked after CLIP and TAG. SIZE will

scan the tagged image in frame memory or on disk, and measure the pixel

dimensions of each feature. If any feature fails to satisfy the size limits imposed

during setup, these will be flagged out to the user. Figure 34 shows the information

on the SIZE screen.

53

SIZING FEATURES

Sized 184 Features within specifications

Elapsed time: 8.3 seconds

Save data [Y]?

Figure 34. SIZE screen showing number of features sized and the time
taken to size them. There is also a prompt to save the sized
feature data.

If the sizing is successful, the user can save the results into a data file

which has the same filename as the image but with the extension .dat. The results

are also tabulated on the computer monitor twenty features at a time (see

Figure 35). The largest and smallest feature dimensions are also recorded in the

sessions file.

D. IMAGE ANALYSIS PROCEDURE

1. Merging the Data Files

Analysis of the images is usually carried out after a series of SEM images

from the same firing have been sized. Each sized image will generate a data file

containing areas and chord values. In order to obtain a statistically significant

sample population and thereby reduce sampling errors, the data files from all the

images belonging to one rocket motor burn have to be merged. Module ANALYZE

handles this merging operation and is invoked by selecting , at the SEMEX main

54

TABLE OF FEATURE DATA
ID NO AREAC AREAM X-Chord Y-Chord

1 2.042 2.600 1.300 2.000
2 4.084 3.900 2.600 2.000
3 25.528 16.902 6.501 5.000
4 24.507 27.303 5.201 6.000
5 70.457 61.106 3.900 23.000
6 2.042 2.600 1.300 2.000
7 1.021 1.300 1.300 1.000
8 1.021 1.300 1.300 1.000
9 1.021 1.300 1.300 1.000

10 15.317 15.602 3.900 5.000
11 8.169 6.501 2.600 4.000
12 1.021 1.300 1.300 1.000
13 3.063 3.900 1.300 3.000
14 20.422 18.202 2.600 10.000
15 9.190 9.101 3.900 3.000
16 1.021 1.300 1.300 1.000
17 1.021 1.300 1.300 1.000
18 1.021 1.300 1.300 1.000
19 4.084 5.201 2.600 2.000
20 1.021 1.300 1.300 1.000

Press [ENTER] for MORE or [ESC] to QUIT

Figure 35. Tabulated data showing the calculated equii z.lent elliptical
areas (AREA_C), the measured pixel areas (AREAM), the
X-Chords and Y-Chords for 20 features.

menu 6. Analyze Features. The module will begin by listing all the .dat data files

in the current directory one at a time, for the user to select (see Figure 36).

2. Calculating Particle Volume

ANALYZE calculates the particle volume by assuming that the particles

are spheres. It takes the measured particle areas from all the selected data files and

determines the equivalent particle diameters and volumes. A 38-bin histogram is

tabulated and displayed 10 bins at a time. This result is also saved into an ASCII .his

file and can also be saved in a MATLAB-compatible .nat file. If the latter is

chosen, the user can quit SEMEX and have the histogram plotted by running SEM.AI

55

MERGING FILES

DATA FILENAME DATE CREATED

TEST1.DAT 18 Feb 1991

Include[Y] ?

Figure 36. ANALYZE screen prompting one data file at a time with its
date of creation. Pressing 'Y' or 'y' accepts the datafile. A
count is kept of the number of files selected.

inside MATLAB. The histogram plot shows percentage of total particle volume

against a logarithmic scale of particle diameter. This plot format is similar to that

put out by the Malvern MasterSizer. For ease of comparison, both SEMEX and

Malvern data can be plotted. Sample plots are shown in the next chapter.

56

VI. EXPERIMENTAL RESULTS

This chapter describes the preliminary experimental results obtained. It is

divided into three sections: system calibration and error quantification, comparison

of the performances of SEMEX and HOLOGRAM, and, correlation of the results

with that of the Malvern MasterSizer.

A. CALIBRATION

1. Determining Pixel Aspect Ratio

In order for outdataO in SIZE to properly convert pixel counts into

dimensional lengths and areas, there is a need to first determine the pixel aspect

ratio. In the vidicon camera used, the aspect of a single pixel is not square. To

determine the actual aspect ratio, a three-inch rule was placed, first horizontally, then

vertically. The digitized lengths were then measured using the measure line()

function in SETUP. The measurements are tabulated in Table I.

Table I. CAMERA PIXEL SIZE

Orientation Horizontal Vertical

3-inch Reference length 350 pixels 420 pixels

Pixel Length (inch/pixel) 0.00857 0.00714

The pixel aspect ratio can be obtained by taking the ratio of the horizontal

length to vertical length of a single pixel. This is equal to 420 : 350 (or 1.2) since the

57

same 3-inch length was measured. In SEMEX, this constant is defined as the

ASPECTRATIO. This works out to be the same as the frame aspect ratio.

2. Quantifying System Errors

To quantify the system errors, a test pattern was created by placing on a

white background, 48 black etch-resistant circles used in printed circuit artwork

(commonly called donut pads). Each circle has an outer diameter of 0.187 t 0.003

inches and an inner diameter of 0.062 ± 0.003 inches (see Figure 37). The variability

of the outer diameter gives rise to an error of 1.6%.

000000000000
000000000000

000000000000
000000000000

Figure 37. Calibration test pattern consisting of 48 donut pads placed in
four rows.

The gain, offset and illumination were adjusted in accordance with the

setup procedure and precautions given in Chapter V. The measurelineO function

was used to determine the vertical outer diameter of the donut pad, in pixels. The

vertical scale factor, VSCALE, could then be determined by taking the ratio of the

measured pixel length (28 pixels) and the true vertical length (0.187"). For the setup

58

used, VSCALE was found to be 149.733 pixels/inch. Since measure_line() only

determines VSCALE correctly for a 5 um line, VSCALE has to be manually entered

in the SETUP screen. SEMEX calculates the horizontal scaling factor by dividing

VSCALE by ASPECTRATIO. The area represented by a single pixel can then be

found by taking the reciprocal of the product of the horizontal and vertical scaling

factors. This area, multiplied by the number of pixels covering a particle, gives the

measured area of that particle.

Next, the ACQUIRE module was executed to digitize the test pattern into

frame memory. CLIP was then invoked and the automatic thresholding function

autoclipO applied. This yielded a visually-clean binary image for a threshold of 157.

After exiting the CLIP module, TAG and SIZE were invoked. The results are

tabulated in Figure 38. The maximum percentage error is given by the maximum

deviation from the mean expressed as a percentage of the mean.

The elliptical areas (labelled AREAC in column 2) were calculated by

taking the products of the x-chords and y-chords (these correspond to the major and

minor axes of an equivalent ellipse) and multiplying by the constant, 7r/4. The

AREA_C values corresponded reasonably well with the actual pixel areas measured

(labelled AREA M in column 3). The difference ot the two mean areas amounted

to 3.9% of the mean of AREAM.

Although the effect of the non-square pixel aspect ratio had been

compensated for, the results showed that the x-chord and y-chord lengths were still

not equal. The difference between the two mean chords was 9.4% of the mean y-

59

ID AREA C AREA M XCHORD YCHORD
1 0.0f9 0.028 -0.184 0.200
2 0.029 0.028 0.184 0.200
3 0.026 0.025 0.168 0.194
4 0.026 0.026 0.168 0.194
5 0.027 0.027 0.176 0.194
6 0.028 0.027 0.184 0.194
7 0.028 0.027 0.184 0.194
8 0.027 0.027 0.176 0.194
9 0.027 0.026 0.176 0.194

10 0.024 0.023 0.160 0.194
11 0.024 0.024 0.160 0.194
12 0.027 0.026 0.176 0.194
13 0.028 0.027 0.184 0.194
14 0.027 0.025 0.176 0.194
15 0.027 0.026 0.176 0.194
16 0.027 0.026 0.176 0.194
17 0.026 0.026 0.176 0.187
18 0.027 0.026 0.176 0.194
19 0.027 0.026 0.176 0.194
20 0.027 0.026 0.176 0.194
21 0.024 0.023 0.160 0.194
22 0.025 0.024 0.168 0.187
23 0.026 0.025 0.168 0.194
24 0.024 0.022 0.160 0.187
25 0.025 0.023 0.168 0.187
26 0.026 0.024 0.168 0.194
27 0.027 0.025 0.176 0.194
28 0.027 0.026 0.176 0.194
29 0.027 0.026 0.176 0.194
30 0.027 0.026 0.176 0.194
31 0.028 0.027 0.184 0.194
32 0.028 0.027 0.184 0.194
33 0.027 0.026 0.176 0.194
34 0.027 0.025 0.176 0.194
35 0.024 0.024 0.160 0.187
36 0.025 0.024 0.168 0.187
37 0.024 0.023 0.160 0.187
38 0.024 0.024 0.160 0.187
39 0.025 0.025 0.168 0.187
40 0.026 0.025 0.176 0.187
41 0.026 0.026 0.176 0.187
42 0.028 0.027 0.184 0.194
43 0.0 7 0.026 0.184 0.187
44 0.028 0.026 0.184 0.194
45 0.028 0.026 0.184 0.194
46 0.027 0.026 0.176 0.194
47 0.026 0.025 0.176 0.187
48 0.027 0.025 0.176 0.194

Mean 0.027 0.026 0.174 0.192
Max % Error 9.43 13.73 8.15 3.71
Std Deviation 0.001 0.001 0.008 0.004

Figure 38. Output from SIZE showing the results obtained from the
calibration test pattern. The calculated area, AREAC, is
given by 7/4 * XCHORD *Y CHORD.

60

chord. The deviation within each chord amounted to a 8.2% error for the x-chord

and a 3.7, error for the y-chord. Taking into account the variability of the dornut

pads (1.6c), the system has contributed to errors of 6.6% and 2. 1c for tile x-chords

and y-chords respectively.

In an attempt to identify the source of this error, a square grid was

digitized. A rectangular graphics box was then placed over the grid lines. It was

found that vertical lines near the right edge were slanted while lines along the other

three edges were correctly digitized (remained orthogonal). Figure 39 shows the

* ifll[Z .?:~ll5 , .:. :: .. I Ui U -Ilh

0I so .;'a fat-,,H

rectangularAM grphcnbx

* E1 1 1E J'O 4DU

~I L F *
UKa

square grid image with the artifact enhanced by the rectangular box. The maximum

divergence was found to be three pixels. Using a plumb line and a liquid level, the

light table and camera were checked for squareness and were found to be accurately

aligned. It is suspected that this error is due to variations in the horizontal scan

61

nn l i ar gid immlmage nwit th artiactehn ce by th retnua ox h aiu

velocity of the vidicon camera down the frame. If this is true, then the vidicon

camera has introduced a scanning error of three pixels. However, this amounts to

only 0.6% error over the whole frame length and is insufficient to account for the

deviation in the chord values.

Next, a 3-dimensional plot was made by sampling the pixel values around

a single donut pad (32 x 32 pixels) in the calibration test pattern. Each grid square

represents one pixel. The pixel values are represented by the height (z-axis) of the

plot. Figure 40 shows that the edges of the donut pad are not vertical. This suggests

Figure 40. 3-D plot showing the pixel values from a digitized image of a
donut pad. Note that the plot has been inverted for clarity.
This gives rise to high peaks for dark regions.

that the analog-to-digital (A/D) converters in the frame grabber are not fast enough

to digitize a sharp transition from peak white to peak black (the latter is represented

by the flat circular region on the plot). The contrast transfer function of the camera

and lens system also contributes to this limitation. The slope represents the amount

62

of error. From the plot, the change from peak white to peak black takes one to two

pixels. As there are two slopes for each feature, the error could be as much as 4

pixels. Depending on the threshold selected, the cross-sectional area would change.

The worst case slew rate error for the case of the donut pad would be 4 pixels out

of 28 (the measured pixel length), or 14.3%. The error is a function of the size and

contrast of the feature. This error is very significant for small features of the order

of one to five pixels. For the magnification used in the SEM, a 1/8 Am particle

would occupy only two pixels and have a slew rate error of up to 33.3%. As the

particle size increases, the error drops dramatically. A 1 Am particle, for example,

would have a maximum slew rate error of only 6.3%.

A major problem faced is the determination of the proper threshold to use.

In chapter V, an automatic thresholding algorithm was described. The use of an

automatic threshold can significantly improve the throughput. However, the criteria

for threshold determination is an important consideration. Figure 41 shows a three-

dimensional plot of a 32 x 32 pixel gray scale image. The left portion shows the

varying gray scale levels of each pixel. When the region is clipped, the gray scale

levels below the threshold are suppressed. However, different thresholds result in

vastly different results as can be seen by the center and right portions of the figure.

The right portion was obtained using the automatic thresholding algorithm. From

the figure, it can be seen that the limited slew rate has prevented small features from

exhibiting a high pixel value. Hence, they tend to be suppressed. In this particular

case, the autoclipo function was able to bring out thirteen features.

63

Figure 41. Three-dimensional plot showing a 32 x 32 pixel region drawn three
times at different thresholds. The left portion is the gray scale
image. The center and right portions are at thresholds of 33 and
165.

B. PERFORMANCE COMPARISON WITH HOLOGRAM PROGRAM

The HOLOGRAM program written by Hockgraver [Ref. 6) consists of the

following modules:

1. Filtering routines.

2. Image threshold.

3. Feature identification.

4. Feature sizing.

64

Of these four modules, only the last three modules have similar functions in

both HOLOGRAM and SEMEX. The first module (filtering routines) is used to

reduce the effect of speckle introduced during image reconstruction from a hologram.

This is not applicable to the SEM images as there is no speckle. In addition,

SEMEX has two essential stages not carried out by HOLOGRAM. These are the

acquire and analyze stages. HOLOGRAM depended on the ImageActionplus

software to perform image acquisition and on Statgraphics for analysis. This

generally took much longer, as the ImageActionplus was not tailored to perform the

acquisition, cropping and c-implementing of the images in an efficient manner. Also,

the scaling factors had to be manually determined. Similarly, Statgraphics required

its own setup procedure.

Comparison of the performance of the three modules common to SEMEX and

HOLOGRAM was carried out by subjecting both programs to a common set of

images. These images were previously acquired and then stored on disk. The images

had different numbers of features ranging from 48 to 920, and are shown in

Figure 42. The execution times are tabulated in Table II and the speedup calculated.

Speedup is defined as

Speedup - Execution Time of Slow System (HOLOGRAM) (3)
Execution Time of Fast System (SEMEX)

and is a standard measure for the performance improvement of two systems.

From the results, it can be seen that the speedup becomes more significant as

the images become more complex. Almost an order of magnitude improvement has

65

00 00 1
00 00
00 00
00 00
00 00
00 00
00 00
00 00
00 00
00 00
00 00
00 00

Image #1 Image #2

Figue 4. Imge use fo etn h efrmneo E gis

0 0 a 9 f
66A

O0 O0* . 0

Imag .# 1 .mae #

• . ,'. . 4 .

.I •. , . ".'l' .. •

* ° .I ~ . . " .

4 . S0*. 5 * •. .*

"" . " ". '* '. ".

,... . .4- .

Fiur 4 . I me usd o tesin th pefrac ofSMX gis
HOO R M.Iae .1i th caibato tes patenit4

fetrswieiae 2 #3 an #4 are acu SEM imgswt
17,49 n 92 fetue rsetl..

• .66

Table I1. COMPARISON OF EXECUTION TIMES FOR HOLOGRAM
AND SEMEX.

I IPROGRAM FUNCTION # 1 #2 #3 #4

HI THRESHIT 15 15 15 15

S1 CLIP (Note 1) 7.5 7.5 7.5 7.5

SPEEDUP (Hi/Si) 2.0 2.0 2.0 2.0

H2 FEAT ID 49 66 96 185

S2 TAG (Note 2) 12.9 14.4 18.1 35.1

SPEEDUP (H2/S2) 3.8 4.6 5.3 5.3

H3 SIZEIT 52 125 343 620

S3 SIZE (Note 3) 7.9 8.2 14.6 25.4

SPEEDUP (H3/$3) 6.6 15.2 23.5 24.4

H4 HOLOGRAM 166 256 504 870

S4 SEMEX (Note 4) 50 66 78 108

SPEEDUP (H4/S4) 3.3 3.9 6.5 8.1

NOTES:

1. The times for steps H1 and S1 do not include times to input filenames (approximately
10 s each). The HI times are based on one iteration only. In practice, 3 to 5 iterations
may be required before arriving at a satisfactory threshold. For S1, the thresholds are
determined automatically by autoclipO. These same thresholds arc used in THRESHIT
so that the same binary images are processed by both programs.

2. The times for steps H2 do not include times to input filenames. For S2, no filename
entry is required as the frame memory is used.

3. The times for steps H3 do not include times to input filenames and answering prompts
(approximately 25 s). For S3, no user intervention is required.

4. The times for H4 and S4 includes all the user input and setup times.

5. Four images (#1 to #4) were used with 48, 177, 495 and 920 features, respectively (see
Figure 42).

67

been achieved. This is because the four nested loops used in both THRESHIT and

SIZEIT (in the HOLOGRAM program) become highly inefficient. In SEMEX, this

inefficiency is prevented by prematurely aborting the loops whenever the end of a

feature is detected.

Another observation was that, for the same image and threshold, the modules

within the HOLOGRAM program produced different feature counts. For example,

with image #2, THRESHIT counted 177 features (same as TAG and SIZE) but

SIZEIT counted only 175 features. Only image #1 produced consistent results for

HOLOGRAM, whereas SEMEX produced consistent counts for all the four images.

This suggests that one or more of the HOLOGRAM modules may not have been

correctly coded.

C. CORRELATION WITH MALVERN MASTERSIZER

From one of the recent test firings using 4.69% aluminum solid-propellant, two

sets of SEM images were extracted and analyzed. The results were then compared

with that from the Malvern MasterSizer. The two sets of results are plotted in

Figure 43 and Figure 44.

The results show that as the particle counts increase, the distributions produces

a better correlation with the Malvern. Hockgraver [Ref. 6] showed that about 1,000

particles were required to produce a steady-state distribution for hologram images.

From this particular set of images, 1,062 particles appeared to be insufficient.

Unfortunately, there were no more SEM images from the same burn to extract.

I fence, it is not possible to verify the minimum sample size requirement at this time.

68

HISTOGRAM OF PARTICLE VOLUME

20 Merged from 3 images
Filename: f2631.mat
Total Vol: 294.2 um3

i Particle Count: 584

15 - - M alvern

> [SEMEX

I I

5ii

100 101 102 103

Particle Size in Microns (Log scale)

Figure 43. MATLAB plot showing the histogram data from SEMEX and
Malvern MasterSizer. The SEMEX data was obtained from three
images with a total of 584 particles.

It is suspected that an exact value cannot be determined even if sufficient SEM

images were available. This is because the particle distribution varies considerably

with the location of the probe tip (in both the radial and longitudinal directions), the

portion of the filter paper from which the SEM images were taken, and the

propellant characteristics. There is also a high possibility of debris and other

contaminants being collected on the filter paper and this could skew the resulting

particle distribution.

69

HISTOGRAM OF PARTICLE VOLUME

20-

Merged from 6 images
Filename: f2661.mat -
Total Vol: 490.5 um3

g-15 Particle Count: 1062

S--- Malvern
> SEMEX

10>

I Particle Size in Microns (Log scale)10o 101 102 103

Figure 44. MATLAB plot showing histogram data from SEMEX and Malvern
MasterSizer. The SEMEX data was obtained from six images with
a total of 1062 particles.

70

VII. CONCLUSIONS AND RECOMMENDATIONS

This chapter lists the limitations of the present SEM extraction system and

makes recommendations on how to further improve its performance. The

recommendations are divided into three sections: hardware, software and

methodology, respectively.

A. HARDWARE LIMITATIONS AND RECOMMENDATIONS

1. Light Table

The light table setup can be improved by using a moe uniformly

distributed light. The use of a fluorescent ring light with the camera lens placed

though the center will help distribute the light uniformly on the photographic image.

Other external illumination (from windows and ceiling) should be excluded. Use of

diffusers would further reduce any uneven distribution of the illumination. A rigid

photograph mount or stage would also be helpful for accurate alignment of the

images. This would allow for the use of image subtraction techniques whereby an

image of the blank background is first taken. This image is then subtracted from the

actual SEM images to remove any dirt or artifacts present in both images.

2. Video Monitor

The present video monitor is unable to dism'ay the full image frame.

Consequently, any edge artifacts cannot be seen. The use of a video monitor that

71

has adjustable vertical and horizontal static convergence controls (V-SIZE and H-

SIZE) would enable all the frame borders to be seen.

3. Video Camera

The use of a Charge-Coupled Device (CCD) camera with square detector

elements would overcome the problem of the pixel aspect ratio not being square and

also eliminate the errors due to the scanning of the vidicon camera. In order to

improve the accuracy of the extraction, higher resolution CCD cameras (typically

1024 x 1024 pixels) would be required. Unfortunately, these cameras are not RS-170

compatible and cannot be used with the existing frame grabber. The contrast

transfer function (CTF) of the camera and lens system may have to be further

investigated to determine its contribution to the slew rate errors.

4. Direct Acquisition of SEM Images

Presently, the Hitachi S450 SEM has a high persistence video display for

the operator and a high resolution line scan for exposing the photograph. The

problem of providing uniform illumination during acquisition of the SEM

photographic images may be overcome by acquiring images directly off the SEM

video display. However, the video display resolution is significantly poorer than the

line scan. Hence, it is not advisable to record SEM images directly off the former.

A better arrangement would be to tap out the signal direct from the SEM

line scan. The line scan takes approximately five seconds to cover the whole frame

area. To use this signal would require building an interface with the correct video

impedance matching and timing synchronization. The feasibility of this approach

72

would depend on the availability of technical information on the SEM. However, by

mounting the video camera in place of the Polaroid camera, it may be possible to

integrate all the frames (approximately 300, based on 5 s at 30 frames/second) to

form a complete image.

An ideal solution would be to use a SEM that has a RS-170 video output

and a programmable stage. In this approach, programmed instructions can be

inserted to make the SEM stage scan all the areas on the sample without overlap.

The images captured can be processed in real time if a faster processor is available.

This will reduce the sampling errors due to small sample population.

5. Sun Workstation

Various optimization techniques have already been employed to enhance

the speed of the system. This has resulted in an order of magnitude increase in

speed over that of the HOLOGRAM program. Further attempts to increase the

speed would require disproportionate amounts of effort (Amdahl's Law). Presently,

the processing speed is limited by the IBM AT/386 and the frame grabber memory.

In addition, the resolution of the current setup allows reliable sizing down to only

1/8 tm (with some degradation in accuracy). This resolution is limited by the video

camera and the frame grabber.

By upgrading to a Sun SparcStation 1, it is expected that another order of

magnitude increase in speed would be possible with a two-fold increase in resolution.

However, the frame grabber, video copy processor and monitor would also have to

be replaced. The Sun SparcStation 1 has a 32-bit SPARC CPU running at 1.25 MIPS

73

coupled with a floating-point unit for faster floating-point computations. The higher

integer and floating-point performance over a PC would auger well for processing the

larger image arrays. It has a 104 MB internal SCSI hard disk and a 3.5" 1.44 MB

floppy disk drive for easy data transfer and DOS compatibility. The latter would

allow the SEMEX program to be ported over. A higher-resolution frame grabber

with function calls compatible with the PCVISIONplus should be used to minimize

software portability problems. The monitor resolution is 1152 (h) by 900 (v) pLxels

with a pixel aspect ratio of 1:1. The monitor has horizontal and vertical static

convergence controls to adjust the frame size.

B. SOFIWARE ENHANCEMENTS

1. Automatic Camera Input Adjustment

Automated setup procedure for adjusting the camera inputs can be done

by generating a histogram of the distribution of pixel gray scales. An image with

good contrast would have a good spread of gray scales ranging from peak black to

peak white. An algorithm could be devised that would analyze the gray scale

distribution and would adjust the camera offset automatically to maximize image

contrast. This would eliminate the subjective determination of the camera input gain

and offset. The setup time could also be shortened, as there would be less user

intervention required.

74

2. Automatic Threshold Algorithm

Currently, the background is sampled at fixed points which have been

empirically-determined, based on the existing lighting arrangement. Changing the

lighting could affect the performance of the automatic threshold algorithm.

Consequently, the regions may not be optimal and may need to be changed. With

faster processors available, the whole frame area can be scanned to determine the

background threshold. This would result in a more accurate background threshold

assessment.

3. Improved Image Processing Algorithms

Improved image processing, such as independent sizing of overlapping

particles, filling in of hollow areas, and filtering off of irregularly-shaped features that

fail certain roundness and sphericity tests, could be added. Currently, joined features

are treated as one large feature with an irregular perimeter. However, if the

curvature of each of the overlapped feature could be found, the outline of each of

the overlapped features could be determined. This requires a significant amount of

computation and, hence, was not implemented in SEMEX.

Up to this point, the only sphericity test carried out is by calculating the

area of an equivalent ellipse using the x-chord and y-chord lengths. This could be

improved by measuring other parameters, such as the perimeter or radius of

curvature. In some cases, particularly when large particles are involved, it was noted

that the centers of the particles were not filled. This woald result in smaller

measured areas (AREAM) and could introduce false features within the hollow of

75

the particle (see Figure 45). TAG may have to be modified to test for the existence

of unfilled areas and to fill these up automatically.

A I

Figure 45. Three-dimensional plot of a particle showing that the center
region is not a plateau. A smaller particle can be seen rising
out of the center. This would give rise to two particle counts.

4. Frame Border

The addition of an area of interest may be justified if particles are likely

to be small. This would then give rise to a border region whereby particles cutting

the border would be sized and counted as a fraction of a particle, depending on the

proportion inside the area of interest. Particles outside the area of interest are not

sized. This will eliminate sizing errors due to incomplete particles. An alternative

scheme would be to simply exclude all particles touching the edge of the frame.

76

C. IMPROVEMENTS IN METHODOLOGY

1. Photographing SEM Images

As far as possible, images should be taken with the same magnification

and brightness and contrast settings. This would enable the acquisition stage to

proceed faster. SETUP would have to be called only once and all the parameters

would then be left unchanged for the whole set of images.

From the five sets of images processed, it was found that up to four

exposures could be made on one photograph without significant degradation in the

results. This saves time in the photographing process and also in the extraction

process. The only limitation is where overlapping of particles begins to occur, due

to the multiple exposures. This will result in larger particles being sized.

In chapter VI, more than 500 particles were used in the histogram plots.

This was found to be insufficient. Hence, there should be sufficient SEM images to

extract so that a steady-state distribution can be obtained.

2. Running SEMEX

Although SEMEX allows the user to customize the sequence of the

processing, there is a preferred sequence to extracting SEM images, namely: acquire,

clip, tag and size. This was shown in Figure 5 and the aim is to reduce disk reads

and writes which takes between 5 and 8 seconds per image. An image which has

been acquired and saved has its pixel values stored in the frame memory. Hence,

CLIP can be initiated without recalling the image from disk. Similarly, after each

clip and tag operation, the frame memory can be used by tag and size, respectively.

77

In this way, there is no need to retrieve an image from disk. Another advantage is

that intermediate disk files need not be maintained (i.e., .inil, .ini2 and .ira3 files).

D. CONCLUSIONS

The IBM AT/386 running SEMEX has been found to speed up the extraction

of particle sizes from SEM images. The results show that for the three stages of

clipping, tagging aaid sizing, a speedup of nearly an order of magnitude was possible

over that of the HOLOGRAM program. The speedup and throughput would be

considerably more if all the stages of acquisition, clipping, tagging, sizing and analysis

were compared. The errors obtained for small particle sizes on the order of half a

micron or less are considerable. To reduce these errors, the magnification of the

SEM images would have to be increased or a higher-resolution acquisition system

would be required. The simplest approach would be to increase the magnification.

This would require more photographic images and consequently more operator time

and manpower cost, A higher-resolution system would entail an increase in

computational cost on the order of the square of the frame length in pixels. This

would strain the IBM AT/386 but would be comfortably handled by a Sun

SparcStation. The capital outlay could be justified by the gain in system resolution

and the savings in manpower cost.

78

APPENDIX A. NOTES TO THE PROGRAMMER AND THE USER

This appendix contains a description of the files and libraries used by SEMEX.

It describes the process of compiling the source codes into an executable file using

the Microsoft MAKE facility. The corresponding makefile (MAKESEM) is also

listed. In addition, pointers to programmers and users are provided to help them

understand and maximize the potential for this program.

A. SEMEX PROGRAM FILES

Figure 46 lists the files required to make up the SEMEX executable file. The

files with the .C extension are the C source files. These are ASCII text files and can

be edited with any ASCII text editor. The full listings of the source files are found

in Appendix B. The GLOBAL.H file contains all the prototype definitions required

by the C language for SEMEX; global variables and constants are also defined here.

A full listing of GLOBAL.H is also found in Appendix B.

When compiled, each source file produces a corresponding .OBJ object file.

The object files contain the machine language instructions required to perform the

commands contained in the source codes. The process of linking resolves any

external function calls or variables and binds the object codes and the libraries

together to produce an executable file. After linking, the SEMEX.EXE file is

created. This process of compiling and linking can be automated by using the MAKE

facility provided by Microsoft. The MAKE command requires a makefile which

79

Volume in drive F is LEE
Directory of F:\SEMEX

GLOBAL H 4082 2-28-91 10:10a
ACQUIRE C 10809 2-27-91 2:49p
CLIP C 9063 2-27-91 3:0 4p
SEMIO C 8967 2-27-91 3:06p
TAG C 13987 2-28-91 1l:00a
ANALYZE C 20055 2-28-91 1: 4 5p
SIZE C 18975 2-28-91 11:03a
SETUP C 26789 2-28-91 1: 5 9p
SEMEX C 10687 3-04-91 5:53p
TAG OBJ 4809 2-28-91 1: 4 8p
SEMIO OBJ 3360 2-27-91 3:27p
SIZE OBJ 9204 2-28-91 1:47p
ACQUIRE OBJ 4348 2-27-91 3:25p

ANALYZE OBJ 7965 2-28-91 1: 4 5p
SETUP OBJ 11023 2-28-91 2 :00p
CLIP OBJ 2941 2-27-91 3:2 6p
SEMEX OBJ 3700 3-04-91 5:53p
SEMEX EXE 127481 3-04-91 5:54p
IMGCVT EXE 57405 1-22-91 4:03p

Figure 46. Listing of SEMEX C source files, object files and executable
files using-the DOS DIR command.

contains the file dependencies and the commands to be executed. The MAKESEM

makefile used in developing the current version of SEMEX is shown in Figure 17.

MAKE will determine the validity of the object files based on the dates last

modified. If the source file has a date later than that of the corresponding object

file, MAKE will recompile the source file to generate a new object file. If the object

file is current, no action is taken. In this way, only files that have been modified will

be compiled. This saves compilation time. Text between the number sign '#' till

the end of the line are treated as comments and are ignored by MAKE.

The compile switches currently set are:

/AL This compiles the source file using the large memory model. Far
pointers are allocated. By default, maximum optimization is used.

80

#Make file for semex.c and all the dependencies

To execute type: make makesemn

Options for optimizing and no Codeview
OPT = /Ze
LOPT =/E /ST:8192
Options for no-optimization and Codeview
#OPT =/Zi /Od
#LOPT =/CO /ST:-8192 /F /PAC

Library paths - LARGE ITEXP~plus library and LARGE Microsoft C library
LIB1 = \pcplus\itex\itexpcml
LIB2 = \msc\lib\llibce

acquire.obj:. acquire.c # makesemn
cl /c /AL $(OPT) /G2 /Fs /SI 100 acquire.c

analyze.obj: analyze.c # makesemn
cl /c /AL $(OPT) /G2 /Fs /SI 100 analyze.c

clip.obj: clip.c # makesemn
cl /c /AL $(OPT) /G2 /Fs /SI 100 clip.c

semex.obij: semex-c # makesemn
cl /c /AL $(OPT) /G2 /Fs /SI 100 semex.c

semio.obj: semio.c # makesemn
cl /c /AL $(OPT) /G2 /Fs /SI 100 semio.c

setup.obj: setup.c # makesemn
cl /c /AL $(OPT) /G2 /Fs /SI 100 setup.c

size.obj: size.c # makesemn
cl /c /AL $(OPT) /G2 /Fs /SI 100 size.c

tag.obj: tag.c # makesemn
cl /c /AL $(OPT) /G2 /Fs /SI 100 tag.c

semexexe: makesemn semex.obj semio-obj size.obj setup.obj tag.obj clip.obj
acquire.obj analyze.obj

link /NOD $(LOPT) semex semio size setup tag clip acquire analyze...
IWin $(LIB1) $(LIB2)

del *.1st

Figure 47. MAKEFILE used in creating SEMEX.

81

/G2 This compiles using the 80286 code instead of the 8088 code.

/Ze This enables extensions to ANSI C and offers additional features beyond
that provided by ANSI C. One particular feature required by SEMEX
is the use of casts to produce ivalues (left-hand values).

/Sl 100 This sets the width of the listing file to 100 characters. If a compilation
error is detected, MAKE will abort leaving a listing file which the user
can refer to. If no errors are detected after linking, all the listing files
are deleted.

The variables $(OPT) and $(LOPT) in MAKESEM are used for macro

substitutions and will be replaced by their equivalent right-hand expressions specified

at the beginning of the makefile. Two sets of equates are provided; one is for enable

CodeView debugging while the other optimizes for speed. The former is currently

commented out.

After successful compilation, the linking process will be initiated. As long as

one object file has been modified, the LINK command will be invoked. This causes

the object files and the libraries to be linked together. The libraries must be in the

correct sub-directories as indicated by their paths. If the link is successful, all the

listing files will be deleted. The libraries used are

LWIN.LIB Large Memory Model Library for WINDOW BOSS. This
currently resides in f:\SEMEX.

ITEXPCML.LIB Large Memory Model Library for ITEX PCplus.

LLIBCE.LIB Large Memory Model Library for Microsoft C.

82

B. SEMEX OUTPUT FILES

SEMEX may generate one or more output files. Some of these files are used

by other modules in SEMEX, while others are files which the user can subsequently

access. Figure 48 shows the files that can be generated by SEMEX and what they

represent. SEMEX automatically appends the correct extension. The extension

provided should not be changed, as this may confuse SEMEX. The filename can he

entered by simply typing in the characters. The [Ins] key can be used to insert

characters between existing characters and the [,-] and [-1 arrows keys can be used

to position the cursor.

The image files are all stored in ITEX PCplus compressed file format. This

generally achieves a storage efficiency of 1.8. However, for highly textured images,

the compressed file may actually take up more disk space. With the exception of the

.mat and .met files, the rest of the files are ASCII text files. It should be noted that

non-ASCII files should not be read by a text editor as the latter may try to format

the files by inserting special codes. This would destroy the integrity of the files

render them unusable.

C. WORKING FROM DIFFERENT DIRECTORIES

Generally, subdirectories may be used to contain image files from a particular

burn. In this case, SEMEX should be run from that particular subdirectory from

which the images are to be processed. To do this, simply type the following

commands. For example, if the images are contained in g:\SEM\f14, type

g: [Enter]

83

FILE EXT DESCRIPTION AND USAGE

.ses Sessions file used to record all the activities for the day. The
filename is based on a 3-letter month code and a 2-digit date
code (e.g., Mar28.ses).

.ing Image file generated by ACQUIRE if the save option is
exercised. The image is generally cropped and complemented.

.imI Image file generated by CLIP if the save option is exercised.
The image has been clipped and can be read by the TAG
module.

.inz2 Image file generated by TAG if the save option is exercised. The
image has been tagged and can be read by the SIZE module.

.irn3 Image file generated by SIZE if the save image option is
exercised. The image should be identical to .iml. This is
provided merely for test and verification purposes.

.dat This is the data file generated by SIZE if the save data cption is
exercised. The data consists of the fid, the calculated area
(AREA_C), the measured area (AREAM), the x-chord and the
y-chord, for every feature that meets the size specifications (i.e.,
not rejected).

.his This is the histogram data file generated by ANALYZE. It
contains 38 rows of data. Each row represents one bin and
contains the upper and lower bin limits, the volume in tm 3, the
percentage of total volume, the feature count and the percentage
of total features counted.

.mat This is the MATLAB data file generated by ANALYZE and

contains information similar to the histogram data file except that
it is in a MATLAB format. This is the file which will be asked
for by SEM.M.

.met This is the MATLAB graphics output file which is generated
when the MATLAB meta command is invoked. The .met files
can be plotted by typing GRAPH when in DOS.

Figure 48. List of output files generated by SEMEX.

84

cd \SEM\f 14 [Enter]

Then, to execute SEMEX from f:\SEMEX, type

f:\SEMEX\SEMEX [Enter]

To run MATLAB, first make sure that the MATLAB path is set. For example,

if MATLAB resides on drive f: in a directory called \MATLAB, then the following

line must be added to the CONFIG.SYS file

MATLABPATH = f:\MATLAB

In order for the path to be set, the IBM system would have to be reset by

simultaneously pressing [Ctrl], [Alt] and [Del]. After the system has booted up, type

MATLAB at the DOS prompt. The histogram plotting function is invoked by typing

sem [Enter]

when inside MATLAB. The function will request for a histogram filename. Type

in the filename and the .his extension. It will then ask whether to input the Malvern

data. If the user chooses to, the function will display each bin limit and request for

the corresponding Malvern data. After the bins are filled, MATLAB will plot out

the histogram. The MATLAB meta function can be invoked to save the plot which

can then be printed out using the GRAPH.BAT command in DOS.

D. SPECIAL KEYS TO NOTE

Besides the keys mentioned above, the following keys are important and useful

to note.

[Esc] This key is to tc-minate SEMEX when in the main menu. It can also
be used to abort any unwanted command. For example, SIZE usually
proceeds automatically after TAG finishes (unless disabled during

85

SETUP). However, if the user finds that the tagging operation has
produced wrong results (possibly because the size parameters have been
wrongly set), then he or she could press the [Esc] key when any prompt
appears. This will terminate TAG and return the user to the main
menu.

[F] This function key is used to obtain help information. The help is
context-sensitive, where available.

Mouse support is not available at this time. However, the programmer can

refer to the WINDOW BOSS manual on how to incorporate functions supporting the

mouse.

86

APPENDIX B. PROGRAM LISTINGS

This appendix contains all the source code listings for SEMEX and its modules.

The listings are documented with comments at the start of each function and at the

end of each line. These are marked with a slash and an asterisk in the following

way, /* Comment */. Also included is the MATLAB script file SEM.M. The

sequence of the listings are as follows:

GLOBAL.H

SEMEX.C

SETUP.C

ACQUIRE.C

CLIP.C

TAG.C

SIZE.C

ANALYZE.C

SEM.M

87

GLOBAL.H Include files for use with SEMEX programs
** ******* ************************ ******* *** *** ************* ** ** *

*1

#include <math.h>
#include "itexpfg,h" / ITEX PCplus function definitions *I
#include "stdtyp.h" /* ditto */
#include "window.h" / WINDOW BOSS function definitions *1

/* Program constants for the SEM Extraction (SEMEX) program
* used in conjunction with the PCVISIONplus Frame grabber and
* ITEXPCplus library functions */

/* PCVISIONplus Board Settings */
#define MEMBASE 0xD0000L /* base memory start address */
#define REGBASE 0x300 /* base register start address */
#define MEMORY DUAL /* memory type */

/* Frame Dimensions */

#define XSIZE 512 /* Number of pixels in X direction */
#define YSIZE 512 /* Number of pixels in Y direction *1
#define DEPTH 8 /* Number of bits per pixel */

/* AOI (area of interest) settings */
#define IXS 0 /* Initial X Starting Point */
#define IYS 0 /* Initial Y Starting Point */
#define NROW 480 /* Total Number of rows in image */
#define NCOL 512 /* Total Number of columns in image */
#define LASTROW 479 /* Last row in image */
#define LASTCOL 511 /* Last column in image */

/* Threshold Limits *
#define LOWEST 0 /* Equates to Black for lowcut value */
#define HIGHEST 255 /* Equates to White for highcut value */
#define BLACKLEVEL 0 /* Indicates a feature */

#define WHITELEVEL 255 /* Represents background *1
#define HIGH 254 /* Highest Tag value */
#define LOW 1 /* Lowest Tag Value *1
#define GRAY 128 /* Middle Gray level *

/* Miscellaneous Limits AND Defaults */
#define MAXFLEN 20 /* Max filename length */
#define MAXLEN 200 /* Max comment length allowed by ITEX *1
#define MAXCLEN 50 /* Comment length */

/* Define enter key */
#define ENTER OxOd /* [ENTER] key signature */

88

Global Variables Declarations

extern char filename[MAXFLENI: /* image filename */
extern char session(MAXFLEN]; /* session filename */
extern char comline[MAXLEN]; /* entire comment line */
extern char comlinel[MAXCLEN] /* comment line I */
extern char comline2(MAXCLENJ /* comment line 2 */
extern FILE *fp; /* session file pointer */
extern float ASPECTRATIO; /- X to Y aspect ratio of a pixel *1
extern long TOTAL; /* Total feature counter */
extern int OVERSIZE; /* Default too large feature "/
extern int UNDERSIZE; /l Default too small feature */
extern int GAIN_LV L; /* Initial Gain level */
extern int OFFSETLVL; /* Initial Offset level */
extern int LTMARGIN; /* Initial Left Margin */
extern int RTMARGIN; /* Initial Right Margin */
extern int DF_GAIN ; /* Default gain flag */
extern int DFOFFSET; /* Default Offset flag */
extern int DFLM; /* Default left margin flag */
extern int DF_RM; / Default right margin flag */
extern float VSCALE; /* Initial vertical scale factor */
extern int DFVSCALE; /* Default vertical scale factor flag *1
extern int DF_INVET; /- Auto Complement flag -/
extern int LOADRAW; /* Auto load RAW image flag /
extern int LOADCLIP; /* Auto load Clipped image flag
extern nt DFSIZE: /* Default size limits flag */
extern int LOADTAG; /* Ask to load tagged image flag */
extern int DOSEQ /* Flag to sequence through whole process */
extern int HELP_LVL; /* Help Level */

/*

External function prototypes found in SEMIO.C

extern int getim(WINDOWPTR wint n); /* read image function */
extern int putim(WINDOWPTR w,int n); /* save image function */
extern void chgext(char *fd, char *fs, char *ext);

/* change extension function */

/* End of file GLOBAL.H */

89

/ ft *****f******************t**********ftf***f******ft********
ft

* FILENAME : SEMEX.C

* LAST MODIFIED: 12 Mar 91 by LEE YEAW-LIP
*~~~~ ------------------- ---------

PURPOSE : Scanning Electron Microsope Extraction Program (SEMEX)

* This program uses extensive windowing and calls the

* following functions:

acquire() - acquire images from SEM photographs using

* vidicon camera and PCVISIONplus framegrabber

clipmain() - clips (threshold) the image

tagmain() - tags the features on the image

sizemain() - sizes the features

analyze() - analyze the results by building histogram

setup() - set up equipment and change the level of

user control

#include "globalh- /* global defines */

#include <timeh> /* timing prototypes */

#include <graph.h, /* graphics prototypes "/

l'include <dos.h> /* dos function prototypes */

#include <string.h
> /* string handling prototypes */

Global Variables Defines
*/

char filename[MAXFLEN]; /* image filename */

char session[MAXFLEN]; /* session filename */

char comline[MAXLEN]; f* entire comment line */

char comlinel!MAXCLEN]; /* comment line 1 */

char comline2[MAXCLEN]; /* comment line 2 */

FILE *fp; /* session file pointer */

float ASPECTRATIO = 1.200; /* X to Y pixel aspect */

long TOTAL; /* keeps track of total feature count */

/* The following can be redefined during run time by using setup() *1

int GAIN LVL = 0 1* Initial Gain - set to highest */

int OFFSET LVL = 60 /* Initial Offset - set to midpoint */

int DF GAIN - FALSE; I* Don't use default gain */

int DF OFFSET - FALSE; /* Don't use default Offset */

int LT MARGIN . 0 '* Initial Left Margin - leftmost */

int RT MARGIN - 512 *' Initial Right Margin */

nt DF LM = TRUE ; * Use default left margin = 0 */

int DF RM - FALSE; 1* Don't use default right margin *I

int OVERSIZE 1 I00 ; * Default too large feature */

int UNDERSIZE = 1 /* Default too small feature */

int DF SIZE = TRUE /* Use default size limits */

float VSCALE = 1.0 /* Default Vertical scale factor */

nt DF VSCALE - TRUE /* Use default scale */

int DOSEQ - TRUE /* Auto sequence through whole process */

int DF INVERT = TRUE /* Complement Automatically */

int LOADRAW = FALSE; /* Don't load RAW image automatically */

int LOADCLIP - FALSE; /* Don't load Clipped image automatically *1

int LOADTAG - FALSE; /* Don't load Tagged image automatically f/

int HELP LVL = TRUE /* Enable help screens */

unsigned blue - BLUE /* remap for mono 6

90

main(void)

/* Prototype declarations "/
extern int setup(void); /* setup function */

extern int acquire(void); /* Acquire images from camera "/

extern int clipmain(void); /* Clip Image *1

extern int tagmain(vod); /* Feature Tagging */

extern int sizemamn(void); /* Feature Sizing */
extern int -nalyze(vold); /* Analyse Feature data /

extern clockt clock(void); /* Returns Number of clock ticks "I
extern void fginit(void), /* Frame Grabber Initialization */

extern void session name(void); /* Use date/time as session name */

WINDOWPTR wn; /* One Window */

int I; /* scratch integer */
int watribbatrib; /* scratch atributes */
int rv = 0; /* for menu choice */

int rerr = 0; /* return value from functions */

int row,col; /* for positioning windows */
clock t start; /* Time variable */

static struct pmenu smenu = /* define main menu */
0, FALSE, 0, /* page 0, window open, lndx "/
3, 8, { /* accept menu field 3 thru 8 '/

2, 11, "S E M E X", 0, /* field 0 - info */

3, 4. "SEM Extraction Program", 0, /' field I - info */
4, 3, "Naval Postgraduate School, 0, 1* field 2 - info U

6, 6, "1. Setup SEEX "1, /* field 3 - choice I3/
7 6, "2. Acquire Image ", 2, /* field 4 - choice 2 '/

8, 6, "3. Clip Image ", 3, '* field 5 - choice 3 /
9, 6, -4. Tag Features ", 4, '* field 6 - choice 4 '/

10, 6, "5. Size Features ', 5, '* field 7 - choice 5 *1
ii, 6, "6. Analyze Features", 6, I' field 8 - choice 6 "/

13, 3. "Use cursor keys to select", 0, /* field 9 - info */
14, 3, "Press (Enter] to execute " 0, /' field 10 - info */
15, 3, "Press [Esc] to quit 0, /' field 11 - info */
99, 99, "",99 } /* menu terminator */

start - clock(; /* start timing */
if(wns mtflg - 7) blue - BLACK; /* remap if mono */

printf("Initializing. Please wait...");

fginito; /* set up Frame Grabber */
strcpy(filename," "); /* blank out filename */

session_nameo); /* use date/time for session */
watrib - v setatr(WHITE,BLACK,0,BOLD);/* window attribute */

for(i-0; i<25; i+-+) /* build the back drop */
v_locate(0,i,0); /* position cursor */

v_wca(0, OxbO, watrib, 80); /* the fast way */
I
v hideco); /* hide the cursor */
wn init(; 1* save entry screen */

91

* Popup Menu
*/

do {
watrib = WHITE<<41BLACK; /* window colors */

batrib = blue<<1IWHITE; /* border colors */
if((!DOSEQ) 11 (rv < 3) 11 rerr) /* popup menu to get user choice '/

rv - wn popup(0.3.23,31,17,watrib,batrib,&smenu,FALSE);
else { /* auto sequence */

rv++; /* get next menu list *I
if (rv > 5) rv = 0; /* end of menu list */

crystal(); /* set to internal sync */
switch (rv) { /* do user command */

case 1: /* setup configuration "/

rerr = setupo;
break;

case 2:
rerr = acquireo); /* Acquire Image */
break;

case 3:

rerr = clipmain(); /* Clip Image */
break;

case 4:
rerr = tagmain(); /* Feature Tagging */
break;

case 5:

rerr = sizemaino); /* Feature Sizing */
break;

case 6: /* Analyse Feature data =/

rerr = analyze(;
break;

case 99: /* error or ESC key */
default:

rerr = 1;
break;

/* end switch */
I while(rv !=99);
wn_exit(); /* restore entry screen */

_clearscreen(_GCLEARSCREEN); /* clear screen */
printf("\n\n\n\n\tSession's Activities have been recorded in 2s",session);
printf("\n\n\tSEMEX was on for %.lf minutes.",

(float) (clocko-start) / (float) (CLKTCK * (clock_t) 60))
printf("\n\n\tDeveloped by ECE Dept, Naval Postgraduate School");
printf("\n\ntHave A nice day!\n\n\n");
if((fp - fopen(session,"a")) - NULL)

printf("a\n\n\Unable to open session file Zs\n~tSEMEX Aborted.", session);
else (

fprintf(fp,"\nSEMEX was on for %.if minutes.",
(float) (clock()-start) / (float) (CLKTCK * (clockt) 60));

fclose(fp);

/ if-else */
exit(0); /* Successful termination */

92

Initial PCVISIONplus Frame Grabber setup (Refer to globaibh for defines)

Void

sethdw(REGBASEWFMBASEMEMRY), 1* Set hardware defini.tions '

setdim(XSIZEYSIZE DEPTH); /* set frame dimensions ~
fgon)); 7* turn on frame grabber *

initializeo) /* set up registers and LUTs *
setcamera(0); 7' Select Camera */
extsynco; 7/' Use Camera video sync *
waitvb(); 7* sync to vert~cal blanking *
select rnem(MEMA); /~Select frame A *
display -memME-_A); 7*display frame A *
sclear(GRAY); 7* clear whole TV screen *
setlut(INLUT,0); 7* Use INPUT LUT, bank 0 ~
setlut(GRNLUT,0); 7* Use GREEN OUTPUT LUT, bank 0 *

7* session-name)) gets the current date and time and creates a session
*filename

in

sessionname~void)

struct dosdate-t date; 7*dos.h date structure ~
struct dostime t time; 7* dos.h time structure ~
static char *month[12] ''"Jan", "Feb'. "Mar", "Apr", "May", "Jun',

"Jul', 'Aug", -Sep-, 'Oct", 'Nov', "Dec'-)

dosgetdate (&date); 7* get current date ~
dosgettime (&time); 7* get current time ~

if (dateday < 10) 7* single digit date, pad zero *
sprintf(session.'%3sOldses ',month~date.month -1), date.day);

else 7* double digit date */
sprintf(session,'Z3s%2d.ses .",month~date.month - 1], dateday);

if ((fp -fopen(session."a')) -= NULL){

printf(-a\nkn\Unable to open session file %s'inSEMEX Aborted'", session);
exit; /* terminate ~

else
if (timeminute < 10) 7* single digit minute, pad zero ~

fprintf(fp, 'AnOpening Session on 22d 23s Z4d at 22d:0Zld'*,
dateday, monthtdate.month - 1], date.year. timehour, timeminute);

else /* double digit minute */
fprintf(fp. '\nOpening Session on 12d 23s 24d at 22d:%2d.",

dateday, month~date.month - 1], dateyear, timehour, timeminute);

fprintf(fp. 'n-I")
fclose(fp); 7* close session file *

7* End of file SEMEX.C *

93

"FILENAME: SETUP.C
"CAL-LED BY: semex() and calls clip()

" LAST MODIFIED: 12 Mar 91 by LEE YEAW-LIP

P URPOSE: Setup is used to set up the SEMEX program to configure it

to suit the user's needs, Various prunpts can be turned on
or off to stream-line the processing of SEMs.
It changes the set of global variables ind flags which the
various functions in SEMEX make use oZ cz test for.

*Latest modifica-.ion incorporates check equipxnent which
*facilitates the s,tup of the light table and camera.

measure_ line() has also been added to determine the
*magnif-cation of the image.

viniclude "globalth"
vinclude strin6.h>

se~up(

extern void bool2YN(int, char); /* prototype declaration ~
extern void check eq'uipiment(void); /~ditto */
WINDOWFTR wn; *one window pointer *
WIFORM frm; I" form pointer */
mnt watrib, batrib; /* window, border and /

unsigned fatrib; /* field attributes */

static char *emsgl -'Only range of 0 to 100 allowed. Press any key";
static char *emsg2 = "Only range 2 to 256 allowed. Press any key";
static char *emsg3 - "Only range 1 to 255 allowed. Press any key";
static char *emsg4 -"Only range 0 to 255 allowed. Press any key";
static char *emsgs - 'Only range 256 to 512 allowed. Press any key";
char b0151, b1131; I* string buffers ~
char b2[5), b3(3]; /* ditto ~
char b4[5], b5[3]; /* ditto ~
char b6[5], b7(3]; I* ditto *
char b8(91, b9(3); /* ditto *1
char blO[5]. bll[5]. bl2[3]; 1* ditto */
char b13(61, b1413]; /* unused at the moment ~
char bl5(3], b16(3], b17[31, b18[3]; /* YIN input buffers *
char bl9[3], b20[3]; /* ditto */

CheckEquipmentC); /* check camera and lights *
fatrib - (BLUE-4) I WHITE I BOLD; /* field color/
watrib - v-setatr(WHITE,BLUE,O,O); /* window color ~
batrib - v setatr(RED,WHITE,O,BOLD); /* border color
wn = wn open(500. 1.5,60,19,watrib.batrib);

if (!wn) (
printf("* a\n Unable to open window. Aborting...");
exit 1);

wn titlelwn," SETUP DEFAULTS")
frm - wn_frmopn(22); /* open 21 +~ 1 fields *
if (!frm) (

printf("\a~n Unable to open form. Aborting...');
exitt 1);

itoa(GAINLVL,bO, 10);
wngint(SET,frm, Own, 2. 1, "GAIN LEVEL ",fatrib,' _'

&AIN_-LVL,3,0, 100,bO,emsgl,emsgl);
bool2YN(DFGAIN,bl);
wngbool(SET,frm, l~wn, 2,30, "Use Default[Y,N) ftrb

&DF GAIN,bl,NSTR,NSTR);

itoa(DFFSET LVL,b2. 10);
wn-gint(SET,frm, 2,wn, 3, l,"OFFSET LEVEL '",fatrib,''

&OFFSET_-LVL,3,0, 100,b2,emsgl.emsgl);
bool2YN(DFDFFSETb3);
wngbool(SET,frm, 3,wn, 3,30,"Use Default[YN] :",fatrib, '_

&flF_OFFSET,b3,NSTR,NSTR);

94

itoaCLTMARGIN~b4, 10);
wn_glnt(SET,frm. 4,wn, 4, 1, LEFT MARGIN fatrib.'1

<MARGIN, 3,0, 51l,b4,emsg4 ,ernsg4);
bool2YN(DFLM,b5);
wngbool(SET,frm, 5,wn, 4,30, "Use Default[Y,N) ',fatrib,',

&.DFLM~b5,NSTR,NSTR);
itoa(RTMARGIN~b6,l0);
wr._gint(SET,frm, 6Ewn, 5, 1 "RIGHT MARGIN ~ fatrib,''

&RT MARGIN,3,1.512.b6,ensg5.emsg5);

bool2YN(DFRM~b7);
wn-gbool(SET.frn, 7,wn, 5.30, "Use Default[Y.N] ' fatrib,''

&DF RMb7,NSTR,NSTR);

sFrintf(b8,"'Z7.3f-.VSCALE);
wn_gfloat(SETjfrm,8.wn. 6. 1, "Y-SCALE FACTOR : -fatrib,',

&VSC-ALE, 7,3,0.0.999.0, bB,ernsgl .ersgl);
bool2YN(DFVSCAL-E~b9);
wngbool(SET,frn, 9,wn, 6.30,"Use Default[YN] ",fatrib,',

&DFVSCALE,bg,NSTR,NSTR):
itoa(OVERSIZE.blO, 10);

wn-gint(SET,frm,10,wn, 7, 1, 'Max Feature Size " fatrib,''
&OVERSIZE, 3,2.256,bl0 .emsg2, emsg2);

itoa(UNDE-RSIZE,b11, 10);

wn,-gint(SET,frm.11,wr., 8, 1,Mmn Feature Size ",fatrib,',
&UN0E-RSIZE,3,1,2',bl~emsg3,emsg3);

bool2YN(DFSIZE,b12);
wn,_gbool(SET.frn,12,wn, 8.30,"Use Defaults[Y,N]: "fatrib,' _,

&DFSIZE,b12,NSTR,NSTR);
bool2YN(HELPLVL,b15);
wr._gbool(SET,frm,13,wn.10, 1, 'ALL: Enable HELP screens (Y,N]

fatrib,' - ,&HELPLVL,bl5,NSTR,NSTR);
bool2YN(DOSEQ,b16);
wngbool(SET,frm,14,wn,ll, l,'SEMEX: CLIP, TAG and SIZE without asking[Y.N):

fatrib,' ' ,&DOSEQ,bl6,NSTR.NSTR):
bool2YN(DFINVERT,b17);
wngbool(SET,frm,15,wn,12, 1, ACQUIRE: Complement Image without asking[Y,NI:

fatrib, ' ',&D)FINVERT,b17,NSTR,NSTR);

bool2YN(LOAD RAW~blS);
wn gbool(SET.frm,16,wn,13. l.CLIP; Load RAW Image without asking[Y,N]

fatrib,' I '&LOADRAW~b18,NSTR,NSTR);
bool2YN(LOADCLIP,b19);
wn gbool(SET,fnn,17,wn,l4, 1,"TAG: Load CLIPPED Image without asking[Y.N]

fatrib, ' ' ,&LOADCLIP,b19,NSTR.NSTR);
bool2YN(LOAlTAG~b20);
wn gbool(SET,frm,l8,wn,l5, iSIZE: Load TAGGED Image without asking[Y,N]

fatrib,'-_',&LOADTAG,b20,NSTR,NSTR);
wngtext(SET,fmr,19,wn,16, 1 "Session Filename: ',fatrib, ',18,session,NSTR,NSTR);

wn-dtext(SET~frm,20.wn.18,l,"Press (Esc) to accept Existing defaults");

if(!wn-frmget(frm)) f /* read form */
printf("\akrnMemory corrupted. Aborting wn_frmgeto");
exit(l);

wn_ frmcls(frn); /* close form *
wn close(wn); /* close window *
return(D),

*Convert l's to Y's and O's to N's

void

bool2YN(int n, char *s)

if (n - TRUE)
strcpy(s,"Y');

if (n - FALSE)
strcpy(s,"N");

95

FUNCTION NAME: check_ equipment C
*PURPOSE :This function allows setting up of the light table and

camera prior to actual acquisition of images.
* Afer acquiring a test image, it can be inverted and

clipped to ascertain the uniformity of illumination.
* A graphic cursor facility is also provided to measure
* various features.

void check equipmnent(void)

extern int measure_- line(WINDOWPTR w); 1*function prototype *
extern mnt clipCWINDOWPTR w, mnt t); H'ditto */
WINDOWPTR wn, /* window handle "
int w3trib. batrib; /* Window, border and "
unsigned fatrib; f* field attributes */

char c; /* scratch for user response *
mnt i; I" scratch index *

int done; /* scratch flag *

int gain, offset; /* gain and offset setting "

watrib = v-setatr(WHITE,BLUE,0,0); /* set window attribute *

batrib - v_setatr(RED,WHITE,O,BOLD); /* set border attribute ~
wn - wn open(500,8.13,5O,14.watrib,batrib); /* open dialog window ~
if (!wn) (

printf(-\a\n\n Unable to open window");
exit Cl);

wn_ title(wn,- EQUIPM-ENT SETUP C
wnprintf(wn,'\n\n\tSet up camera and lights[Y])

v.,kflusho); /* empty keyboard buffer ~
c = getc'h); I" get user response '
while C(c !='n') && (c !='N') C *I repeat until No *

/* Turn on camera -/
wn clr~wn); /* clear window *
wn title(wn,- SET UP CAMERA AND LIGHTS ");
wnputs(wn,2,5."Turning on GRABl Mode.C";
setcamera(0); /* connect camera 0 *
extsync(); /* external sync */
grab(NOWAIT); I* ensure grab mode ON *
grab(NO_-WAIT);
/* Fine tuning the board's gain and offset *
wnyputs~wn,1.5," GAIN AND OFFSET SETTING";
gain - GAIN_LVL;

setgain(gain); f* initial gain setting ~
v-kflusho; /* prevent spurious input *
wn~puts(wn,7,1.'*Use [+J and [-] keys to adjust");
wnputs(wn,8,1."Press [ENTER] to continue");
wnyuts(wn,2.1."Gain (0 highest, 100 lowest):";
wn~printf(wn,"X3d",gain);
while ((c-getcho)! ENTER

wn_ locate(wn.2,31);
if ((c -= '4-') &.& (gain < 100)
gain -gain + 5; I* increment in steps of 5 *

if C (c -' C && (gain > 0))

gain = gain - 5; I* decrement in steps of 5 ~
setgain(gain); 1* change the camera gain ~
wnprintf(wn,-%3d-,gain);

GAINLVL =gain; /* Update new gain level *
DF_-GAIN =TRUE; /* Use default gain ~
offset =OFFSETLVL,

a eto f fset Cof fsaet)
wn~puts(wn,4.1,"Offset (0 darkest, 100 lightest): 1
wn~printf(wn,-%3d-,offset);
while ((c..getcho) ! ENTER)

96

wnlocate(wn,4,35);

if ((c ' ') && (offset < 100)
offset = offset + 5: /* increment in steps of 5 "/

if (Cc == -') && (offset > 0))

offset = offset - 5; /* decrement in steps of 5 "7
setoffset(offset); /* change the camera offset "I
wnprintf(wn,"23d",offset);

OFFSETLVL = offset; /* Update new offset "I
DFOFFSET TRUE; /* Use default offset *f
/* Snap a frame (this will stop further acquisition) '/

wn title(wn,' ACQUIRE IMAGE - SNAP MODE ");

done = FALSE; /* check whether image snapped "/
wn clr(wn);
v_kflusho; /* prevent spurious input "/
wnprintf(w,'\n\n\tPress [SPACEBARJ to snap an image");
wn._printf(wn,"\n\t repeat until satisfied");
while ((c = getch()) 1= ENTER)

wnputs(wn,6 ,4 "Wait ..");
waitvb(); I Wait for vertical bla:k:ng

snap(WAIT); /* acquire a frame "I
wnputs(wn,6.4,"Done! ");
wnputs(wn,12,4,"When done, press [ENTERI");
done - TRUE; /* flag that image taken "I

if (!done)
waltvb(); /" Wait for vertical blanking "/
snap(WAIT): f* turn grab off */

crystal(); /* internal sync for stability "I
setcamera(l); /* disconnect camera 0 */
c ='Y';

while ((c == 'y') II (c 'Y') { /* repeat */
wnclr(wn); /* clear screen */
if (measureline(wn)) /* measure line lengths *l

return; 1* error detected. Abort *1
wn printf(wn,"\n\n\tMeasure another feature [N]?");
v_kflush(; /* empty keyboard buffer */
c = getcho);

wn_clr(wn);
/* Complement Image in frame memory */
v_kflush(); /* empty keyboard buffer "/
wn printf(wn,"\n\n\tComplement Image [Y]?");
c getch();

if (c!-'N') && (c!-'n
*
)) {

OF_ INVERT = TRUE; /* Set auto-invert flag *7
wnprintf(wn,"\n\tComplementing Image...");
complement(IXSIYS,NCOL,NROW);

else
DF_INVERT - FALSE; /* Reset auto-invert flag *7

/* Threshold image */
wnprintf(wn,"\n\n\tUpdating frame memory...;
maplut(GRNLUT,0,IXS,IYSNCOL,NROW); /* update frame memory */
wn_clr(wn); /* clear window */
threshold(GRNLUT,0,HIGHESTHIGH); /* Initial threshold *7
wn_printf(wn,"\n\tReduce to guage Lighting Uniformity");
clip(wn,HIGH); /* threshold image */
wn_clr(wn); /* clear window *7
wnprintf(wn,\nntAdjust Lighting and Try again[Y] ?");
v_kflushU; 1* clear keyboard buffer *7

c - getch(); /* get user response */
linlut(GRNLUT.0); /* restore LUT */

/* end while *
wn-close(wn); /* all done *7
return; /* return */

97

FUNCTION NAME: measure lineo)
CALLEP BY: checkequipmento)

LAST MODIFIED: 7 Mar 91 by LEE YEAW-LIP

PURPOSE: This provides a set of functions for generating a graphics
cursor (cross-hair), moving it around with the directional

keys and drawing vertical and horizontal lines. The

directional keys function as follows:
Up Moves cross-hair up one pixel at a time

Down Moves cross-hair down one pixel at a time

Left Moves cross-hair left one pixel at a time

Right Moves cross-hair right one pixel at a time

Home Moves cross-hair left in steps

End Moves cross-hair right in steps

PgUp Moves cross-hair up in steps
* PgDn Moves cross-hair down in steps

Presently step size is 10 pixels

It also calculates the magnification of a 5 micron line.

/" #include global.h' */

#undef UARROW /* undefine to prevent conflict */

#urdpf DARROW /* ditto */

#undef LARROW /* ditto *1

#undef RARROW /* ditto *1

#undef PAGEUP /* ditto */

#undef PAGEDN /* ditto /

e-ndef HOME I" ditto */
#undef END /* ditto */

#define UARROW 0x48 /* redefine key constants /

#define DARROW Ox5O /* ditto */
#define LARROW Ox4b /* ditto */

#define RARROW Ox4d /* ditto *

#define PAGEUP 0x49 /* ditto */

#define PAGEDN 0x5l /- ditto */

#define HOME 0x47 /* ditto */

#define END Ox4f

#define STEP 10 /* step size for fast move

static int xpixval[9], ypixval[9]; /* pixal value under cursor */

static int line[NROW]; /* allocate memory for a line

I*

* measure a line marked by two graphic cursors
*I

measure_line(WINDOWPTR w)

extern void putcursor(int x,int y); /* function prototype *1
extern void unputcursor(int x,int y); /* ditto */
extern void putline(int xl,int yl,int x2,int y2); /* ditto */
extern void unput line(int xl,int yl,int x2,int y2); /* ditto */
extern void chkkey(char c, int *x, int *y); /* ditto 1
extern float calc_line(int xlint yl,int x2,1nt y2); /* ditto *1
char c; /* scratch for key pressed *1
int x - 470. y - 65; /* initial cursor location */

int xl, yl; /* store 1st point on line */
float len; /* length of line */
int color; /* pixel color */

v kflusho); /* prevent spurious inputs

wnprintf(w,"\n\n\tLine Measure Feature");
wnprintf(w,"\n\n\tPosition cursor at first point");

wnprintf(w,"\n\tusing ARROW keys. Press [ENTER] when done\n");

putcursor(xy); /* put cursor at the center */

wnprintf(w,"\r\tCoordinates: Xl: 23d Yl: 13d", x,y);

while ((c - getch)) -- '\0') /* if cursor direction key */

98

c . getcho; /I check direction ~
unput_cursor(x,y), / remove old cursor *

chkkey~c, &x, &v);
put -cursor(x,y); /* put cursor back on ~
wnprintf(wj-kr\tCoordinates: Xl: 13d Yl: %3d', x,y);

/* end while -/

X1 X; !* save Ist point =
V! Y

put _lxne(xl,yl,x,y); /* put out a line ~
/1 get second point on the line *1
wr_printf(w,"\n\n\tStretch line to second point");
wnyprintf~w,-\n~tusing ARROW keys. Press (ENTER) when doneln");
while ((c = getcho) == 1\01) /* if cursor direction key ~

c =getcho; /* check direction *

unputline(xl,yl,x,y); /* remove old line ~
unputcursor~x,y); /* remove. cursor *I
chkkey(c, &x, &y); /* get new cursor position ~
put cursor(x.y); /* put cursor back on ~
put line(xl,yl.x,y); I* put new line */
wnprintf(w,-krtCoordi.nates: X2: Z3d Yx2: %3d" .~)

/* end while *f
len = calc_line(xl,yl,x,y); /* calculate distance1
wnprintf(w,"\n\n\tFeature is %.If pixels long.". len);
if (len 1 0.0) (/* compare with 5 micron ref

VSCALE = len/5.O; /* to give Pixel Conversion Factor
wnprintf~w,-\n\tFor 5 micron vertical line,")
wnyprintf(w,-\n~tVertical Scale factor is 2-4f pixels/micron".VSCALE);
if ((fp = fopen(session,"a")) -NULL){

wnprintf(w,"\a\n\n~tCANNOT open session file Zs',session):
wnprintf(w,**\n~ntPress any key to continue");
getchoC;
return(l); /* premature termination '

else
fprintf(fp,'\nSETUP:\tMeasured length is Z.If pixels long-,Len);
fprintf(fp,'\n~tVertical scale factor is Z.4f pixels/micron",VSCALE);
fclose(fp); /* close session file ~

/* end if-else */
wnprintf(w."knkn\tPress Any key when done)
v-kflushC); /* empty keyboard buffer *
getchoC;

unputline(xi~yl,x,y); /* remove line *
unputcursor(x,y); /* remove cursor ~
raturn(O); /* everything OK *

" Put out a cross-hair graphic cursor at location x,y, saving the

" pixels under the graphic cursor. The intensity of the cursor
* will be peak-white or peak-black depending on the pixel intensity

"~ if the center point.
*1

void
* put cursor~int x~int y)

mnt i; /* scratch counter *1

mnt x1, yl; /* cursor pixel counters ~
mnt color; /* pixel color */

xI - x - 4; /* get the left position *
yl - y - 4; /* get the top position *
/* save pixels under the cursor ~
for (i - 0; i < 9; i++) {

xpixval(i] -rpixel(xl+i,y); /* save pixel value *1

ypixval[i] - rpixel(x~yl+i);

99

if (rpixel(x,y) > GRAY) /* enhance visibility */

color = BLACKLEVEL; /* of cursor *I

else
color = WHITELEVEL;

/* put Out the cursor */

for (i = 0; i < 9; i++) {
wpixel(xl+i.y,color); /* draw horizontal */

wpixel(x,yl+i,color); /* draw vertical */

/*

* Restore image to original state without cursor

void
unputcursor(int xint y)

int i; /* scratch counter */

int xlyl; /* cursor pixel counters */

xl = x - 4; /* get left position "/

yl = y - 4; /* get top position */

for (I = 0; 1 < 9; i') {
wpixel(xl+iyxpicxval[i); /* restore horizontal stroke '/

wpixel(x,yl+l,ypiXval(i]); /* restore vertical stroke

* check key pressed for direction
*/

void

chkkey(char c, int *x, int *y)

switch (c)

case UARROW: /* move up */

(*y)-;

if €(*Y)
<

IYS) (*y) LASTROW;/* wrap round *I

break;

case DARROW: /* move down */
(*y)++;

if ((*y) > LASTROW) (*y) - IYS;/* wrap round *I

break;

case LARROW: /* move left */
(*x)-;

if ((*X) < IXS) (*x) = LASTROW;/* wrap round */

break;

case RARROW: /* move right C/

(*x)++

if ((*x) > LASTCOL) (*x) - IXS;/* wrap round *I

break;

case PAGEUP: /* move up fast */
(*y) -- STEP;

if ((*y) < IYS) (*y) - LASTROW;/* wrap round C/

break;

case PAGEDN: /* move down fast */

(*y) += STEP;

if ((*y) > LASTROW) (*y) - IYS;/* wrap round C/

break;

case HOME: /* move left fast */

(*x) -= STEP;

if ((*x) < IXS) (*x) - LASTROW;/* wrap round Cl
break;

case END: /* move right fast */

(*x) +- STEP;

if ((*x) > LASTCOL) (*x) - IXS;/* wrap round C/

break;

default:
break;

100

I~end switch ~

calculate the distance between two points

float
caic _line(int xl,int yl,int x2.int y2)

if (abs(x2 - x1) a bs(y2 - yl)) f horizontal line '

return(abs~x2-xl))
else /~vertical line *1

return(abs(y2-yl)

* draw a vertical or horizontal line

*saving the image pixels underneath

void

put_ line(int xl. int yl, int x2, mnt y2)

int 1; f* scratch counter/

int color, /* line color */

if (rpixel(xlyl) GRAY) /* enhance visibility ~
color - BLACK_LEVEL; f* of line ~

else

co lor - WHITELEVEL.,
if (abs(x2 - xl) 'abs(y2 - yl)){ /* draw horizontal line ~

if (x2 > xl)
for Ci = xl; i <= x2; i++) (I draw left to right ~

line~i-xll = rpixel(i,yl); /* save pixel values *

wpixel~i~yl,color); /* before overwriting ~

else {/* (x2 < icl) *t
for Ci = x2; i <= xl; i++) { /* draw right to left *

lineti-x2] - rpixel(i,yl); f* save pixel values ~
wpixel~i~yl~color); /* before overwriting *

} I end if(x2 >xl)-else *

else {/* draw vertical line

if (y2 > yl) I

for (i - yl; i <- y2; i++) (I draw top down *
line~i-ylJ rpixel(xl,i); /* save pixel values C

wpixel(xl.i,color); f* before overwriting ~

else (/* (y2 < yl)/
for (i - y2; i <- yl; i+-+) { /* draw bottomi up C

lineti-y2] - rpixel(xl,i); /* save pixel values
wpixel(xl,i,color); /C before overwriting ~

en iCy, f(Y2 > yl)-else C

* I /* end if~abs(x2 -xlfl-else C

" erase a vertical or horizontal line
" restoring the image pixels underneath

void
unputline~int xl. mnt yl, mnt x2. int y2)

mnt i; /* scratch counter *

if C abs(x2 - xl) > abs(y2 - yl))(/* erase horizontal line *

10 1

if (x2 > xl) C
for (i = xl; i<= x2; i+) / erase left to right "/

wpixel(i.yl.line[v-xl]) /* by restoring original values

else { I((x2 < xl) */

for (i = x2; I <= xl; i) I erase right to left

wpixel(c.ylLineli-x2]) * by restoring original values

} / end if(x2>xl)-else "/

else {'erase vertical line "/

If (y2 > yl) (

for (i = yl; i < y2; i++) U* erase top down */

wpixel(xl.I,line[i-yl]); /* by restoring original values '/

else { /* (y2 < yl) */

for (i = y2; i <= 11; i++) /" erase bottom up */

wpixel(xli.line[i-y
2
]); /* by restoring original values "I

} /* end if(y2yl)-else /

} I* end if(abs(x2-xl))-else C/

/ End of file SFTITP.C "I

1

102

SFILENAME : ACQUIRE.C
CALLED BY: SEMEX main program

LAST MODIFIED: 17 Mar 91 by LEE YEAW-LIF

FMRPOSE : This function allows images to be acquired from the

PCVISIONplus framegrabber board. Afer acqairing a frame,

the image can be cropped and inverted if desired before
it is saved. Values applied to the image are saved in

a session file as well as in the comment line of the image
header.

eitn.lude global.h* /* Necessary defines */

-1:nclude <string.h
>

/* string prototypes

Acquire image from camera, invert, crop and then save it

acquirer)

WINDOWFTR wn; /* window handle "/
int watrib, batrib, /* Window, border and "/
-nsigned fatrib, /- field attributes */
char c; /* scratch for user response

char s5151; f* scratch string */
int i; / scratch index "/
int nocam; i" flag indicating camera off
int im, rm; I' left and right margin setting ";

int gain, offset; /* gain and offset setting "r/

watrib = v setatr(WHITE,BLUE.0,0) /* set window attribute *I
batrib = v_setatr(RED,WHITE,0.BOLD); /* set border attribute */

wn = wnopen(500,8,13.50,14,watrib,batrib); /* open dialog window */

if (1wn) {
printf("\a\n~n Unable to open window");
exit(1);

* Read in an image or turn on camera
*/

wn-title(wn," IMAGE ACQUISITION);

wn printf(wn,"\n\n\tRead Image from file IN]?");
v kflush(); /- empty keyboard buffer first */

c = getch(); /* get user response /
if (c 'Y') 11 (c - 'y')) {

getim(wnO); /* read image from file "/
nocam = TRUE; /* Note camera is off */

else
wn_puts(wn,2.3."Turning on GRAB Mode... ";
setcamera(O); /* connect camera 0 */
extsync); /- external sync */

grab(NOWAIT); /* ensure grab mode ON "/
grab(NOWAIT);

nocam - FALSE; /* camera on flag /
/*

* Fine tuning the board's gain and offset.
*/

wn title(wn,' GAIN AND OFFSET SETTING ").
gain - GAIN_LVL;
setgain(gain); /* initial gain setting

wnputs(wn,7,1,"Use (+J and [-] keys to adjust");
wnputs(wn,8,1,"Press [Enter] to continue");
if (!DF GAIN) (

wnputs(wn,2,1."Gain (0 highest, 100 lowest); :
wn printf(wn,"Z3d",gain);
while ((c-getcho)) !- ENTER

103

wn-locate(wn,2,31);
if ((c '')& (gain < 100)

gain - gain +- 5; /* increment in steps of 5 *
if ((c -- '-) && (gain > 0))

gain - gain - 5; /* decrement in steps of 5

setgain(gain); I* change the camera gain ~
wnprintf(wn.-Z3d-,gain);

GAIN_LVL - gain; /* update global gain value *

offset - OFFSETLV.;

s etof f set (of fset)
if (!DFOFFSET)I

wnputs(wn,4,1,"Offset (0 darkest, 100 lightest):)

wn_printf(wn,"Z3d",offset); /* display current offset *

while ((c-getch()) !=ENTER)
wn_ locate(wn.4,35);
if- (c ='+') && (offset < 100)

offset =offset + 5; /* increment in steps of 5 ~
if ((c '-) && (offset > 0))
offset =offset - 5; /* decrement in steps of 5 ~

setoffset(offset); /* change the camera offset I

wnprintf(wn,-%3d-,offset): /* display new offset ~

OFFSET LVI. = offset; /* update global offset value ~

/end if-else *

Snap a frame (this will stop further acquisition).

if (!nocam)
wn title(wn,' ACQUIRE IMAGE - SNAP MODE")

while~i) (
mnt done - FALSE; /* check whether image snapped *

wn-clr(wn);

if (!nocam) {/* using camera ~
v kflush(); /* clear keyboard buffer *

wnprintf(wn," n\n~tPress (SPACEBAR] to snap an image");

wnprintf(wn,"\n~t repeat until satisfied");

while ((c - getcho3) !- ENTER)
wnputs(wn,6,4,"Wait..)
waitvbo3; /* Wait for vertical blanking *

snap(WAIT); /* acquire a frame *

wnyuts(wn.6,4,"Done! ");
wn~puts(wn,12,4."When Satisfied, press [Enter)");

done -TRUE; /* flag that image taken *

1* end while *

if (!done)(
waitvbo; /* Wait for vertical blanking ~
snap(WAIT); 1* turn grab off *

I 1 end if !done *
crystal(); /* internal sync for stability *
setcamera(1): /* disconnect camera 0 *

f* end if !nocam */
/* Clear unwanted areas *

wn-clr(wn);

wnprintf(wn,"kn~n~tPress (SPACEBARI to crop image");/* line 2 *

wnprintf(wn,"\nkt one vertical line at a time");

if (DFLM) {
if (LT -MARGIN > IXS)(/* auto crop left margin ~

wnjprintf(wn,"\nktCropping left edge...");

for (i - IXS; i < LTMARGIN; i+4)
vlclear(i IYS,NROW,BLACK_LEVEL);

In, LTMARGIN;

else (/* let user crop left margin ~
Im -IXS: /* start from left edge */
wnputs~wn.5,2,'Left margin: ";/* line 5 *

104

vkflusho); /- clear keyboard buffer "/
wnprintf(wn,-\n\n\tWhen done, press [Enter]"); /' line 7 /
while((c = getch()) 1= ENTER) {

viclear(Lm,IYS,NROW,BLACK_LEVEL); /* clear one vertical line "/
wnlocate(wn.5,15); /* line 5 */
wn_printf(wn,"'3d",Lm); /' display current left margin 'U

if (Im >= RTMARGIN) I" right edge reached -/

break; /* stop */
else

Im++ / do next line '/

/* end while *1
LT MARGIN = im; I" update global */

} / end if-else /
if (DF RM) {

ifCRTMARGIN < NCOL) { 1" auto crop right margin */
wnprintf(wn,"\n\tCropping right edge..."),
for (i = NCOL; i > RTMARGIN; i--)

vlclear(i,IYS,NROW,BLACKLEVEL);
rm - RT_MARGIN;

else C /* let user crop right margin */
rm = NCOL;
vkflusho); /' clear keyboard buffer "/
wnputs(wn,5,2."Right margin: "); /* line 5 */
wnprintf(wn,"\n\n\tWhen done, press [Enter]"); /* line 7 /
while((c - getch()) != ENTER) {

vlclear(rm,O,NROW,.LACK LEVEL); /* clear one vertical line */

wn_ locate(wn,5,16); /* line 5 '/
wn_printf(wn."%3d,rm); /* display right margin "/

if (rm -= LTMARGIN) /* left edge reached /
break; /* stop *1

else

rm- /* do next line */
/* end while */

RTMARGIN = rm; /* update global */

/* end if-else */
if C (!DFLM) && (!DFRM)) {

wnprintf(wn,"\n\n\tSatisfied with result [Y]?-);/* line 9 /

v_kflush(); /* clear keyboard buffer *1
c - getcho); /* get user response */
if (C c ! 'N && 'n') /* not no */

break; /* done, get out of loop */

/* prepared to redo */
if (nocam)

initluts(); /* restore image */

else {
setcamera(O); /* connect camera 0 */
extsync); /* external sync */
waitvbC);
grab(NO WAIT): /* ensure grab mode ON *1

grab(NO WAIT); /* restore image and start over "1
/* end if-else */

else

break; /* get out of while loop */

/* end while(l) */
wn_ clr(wn);

/* Complement Image in frame memory /
if (DFINVERT) (

wnprintf(wn,"\n\tComplementing Image...");

complement(IXS,IYS.NCOL,NROW);

else
wnprintf(wn,"\n\n\tComplement Image [Y]?");
v kflush(); /* clear keyboard buffer /
c - getcho);

if ((c!-'N') && (c='n)) {
wnprintf(wn,"\n\tComplementing Image...");

105

complement(IXS, IYSNCOL.NROW),

/'end if-else /

Save image

wnprintf(wn,"\n\n\tUpdating frame memory..)

maplut(GRNLUTO,IXSIYS.NCOL.NROW); I"' update frame memory ~
v-kilusho; /* clear keyboard buffer ~
wnprintf(wn,"\n\n\tSave image[Y]);

c getclh));
if ((c !=n) && (c !=N)

putim(wn,O); /* Save image with img extension ~

*Update session file

wnprintf~wn,"\n\n\tUpdating session file..)

if ((fp =fopen(session, "a")) == NULL){

wn,printf(wn,"\a\n\n\tUnable to open session file Is",session);

wnprintf(wn,"\n\n\t~ress any key to continue"');

getcho>;

else
if (nocam)

fprintf(fp,"\nACQUIRE: Image read from Filename: %s",filename);

else
if (c cn != c WN)

fprintf(fp,"\nACQUIRE: Image saved to Filename: Zs",filename);

f* end if-else */

fprintf(fp."\n Commient: Zs",comline);

fclose(fp); /* close session file *

/* end if-else *
wn_ close(wn);
return(O);

end of file ACQUIRE.C/

106

FI1LENAE CLIP.C
*CALLED BY: semex main() and calls clipnain((
L AST MODIFIED :12 Mar 91 by LEE YEAW-LIP

PURPOCSE :This program clips (thresholds) the image on screen by
* taking an operator input value and forcing all image pixel
* values above the threshold value to BLACK_LEVEL and those
* below the threshold value to WHITELEVEL.

* Latest version has an automatic threshold capability

* called autoclip(). It determines the background value
* for predefined 7 regions in the image and uses the
* darkest value.

Background == W4HITELEVEL ; Feature == BLACK_LEVEL

#.nclude 'global h'

exter- mnt clip(WNDOWFTR w,int t); /* function prototype *
W:NDOWPTR wn, /- window pointer */
irnt watrib, batrib; /* window. border and ~
unsigned fatrib; /* field attributes ~
mnt tval; /* threshold value *

char c; f* scratch */

watrib = v setatr(WHITEBLUE,0,O); /* window color *
batrib = v setatr(RED,WHITE,O,BOLD);/* border color *

wn = wnopen(5008,13,5,1,watrib,batrib); /* open a dialog window '

if (1wn) {
printf(-\a\n\tUnable to open window. Aborting..):
exit(1);

wn-title(wn," CLIPPING IMAGE)

if ((fp - fopen(session,"a)) NULL)
wn~printf(wn,"\a\n\n\tCANNOT open session file Zs",session),
wn,,printf(wn.'\n\n~tPress any key to continue");
get ch C
wn_close(wn); /* close dialog box *
return(l); /* premature termination ~

if (LOADRAW) { * auto loading of RAW image -1
wnprintf(wn, "\n~ntLoading RAW image");
if(getim(wn,O)) /* default ext is .img /

goto err; /* error detected, terminate ~
else

fprintf(fp,"\nCLIP:\tImage from Filename: 2s",filename);

else (f ask before loading *
v-kflusho; I* empty keyboard buffer first ~
wnprintf(wn,"\n\n\tLoad Image from disk [N]?")
wnprintf(wi,'\n~tPress [ESCI to QUIT");
c-getcho1;
if (c -- ESC) goto err; /* quit ~
if (C 'Y'11 c - 'y')

* if(getim(wn.0)) /* default ext is .img ~
goto err; 1* error detected, terminate

else
fprintf(fp'"\nCLIP:\tlmage from Filename: %s",filenaie);

/* end if-else *

/clip the image/
wn _clr(wn);

wn printf(wn. \n\n\tletermining threshold..)
tval - autoclip(); /* Use Auto Threshold *
fprintf(fp."n\tAuto Threshold: %3d.tval);
tval - clip(wn,tval); /* Modify Threshold *

fprintf(fp,-\tUser Threshold: 13d" tval);

107

wnclr(wn); /* clear window */

wn_printf(wn,"\n\n\tl: RESTORE image to original and abort);
wnprintf(ni,"'\n\t2: SAVE the modified image-);

wnprintf(wni.\n\t3: EXIT without saving");

w,_printf(wn,"\n\n Select option by NUMBER (3] ");

v kflusho); /* empty keyboard buffer first '/

switch (c=getch())

case '1':
goto err:; /* restore and quit "/

case '2'' /* update and save /
wnprintf(wn,"\n~n\tUpdating frame memory");

maplut(GRNLUT.O.IXSIYS,NCOLNROW);
putim(wn,l); /* save image with default ext iml /

break;
case '3': /* update without savir.g 'I

default:

wn_printf(wn,"\n\n\tUpdating frame memory");
maplut(GRNLUTOIXS,IYS,NCOL,NROW);

break;

/* end switch */

linlut(GRNLUT,O); /* restore GREEN LUT, bank 0 "I
fclose(fp); /* close session file */

wn-close(wn); /* close window */
return(0); /* terminated properly */

err: 1* premature termination sequence */
fprintf(fp,"\n*** CLIP ABORTED ***");

errl:
linlut(GRNLUT,0); /* restore GREEN LUT, bank 0 */

fclose(fp); /* close session file */

wn close(wn); /* close window */

return(l);

Clip (Threshold) routine creates a binary image. Pixel values below 'val'
are changed to BLACKLEVEL while all others are changed to WHITELEVEL

* Returns selected threshold.

" NOTE: The change is not permanent as frame memory is not updated.
* The calling program needs to call maplut() to do this.
a/

clip(WINDOWPTR w, int val) /* passes a window handle */

char c; /* scratch *1

wn_puts(w.3.5,"THRESHOLD LEVEL: ');

wn_printf(w,"%3d",val);

wn_puts(w.6.5,"Use [+] and [-I keys to adjust");
wnprintf(w,"\nn~tPress CENTER] when done");

v kflush(; /* empty keyboard buffer first */

while ((c-getcho)) !- ENTER)

wn_locate(w,3,24);

if ((c'+') && (val < HIGH)
val *- 2; /* increase threshold */

if ((c'-') && (val > LOW))
val -- 2; /* decrease threshold *f

wn_printf(w,"%3d",val);
threshold(GRNLUT,0,HIGHEST.val);/* threshold GREEN LUT *1

/* end while */

return val; /* all OY and done */
/* end clip /

" Autoclip function - This function samples the background over 7 regions
*of the image and determines the darkest value which
* is returned as the threshold value. The regions are

108

- - -- -- -- -- --

(2) (3)1
(4)

(5) (6) (7)1

a,;oclip(void)

int XS!,XE!.XSc,XEcXSrXEr; /* X positions ~
int Ya = 1; /'* y position for region 1 ~
mnt Yb = 80; /- y position for regions 2 and 3 '

inc Yr 243; /* y position for region 4 -/

int Yd = 478; /5 y position for regions 5, 6 and 7

int width =2C; /* width of regions *1
inc CENTER =245; /* center of image ~
in'. tvaL; /* threshold value ~
inc i; /* scratch *f

XSI LT_-MARGIN + 1; /* left edge of regions 1 and 2 *

XEI = XSI + width, /* end of regions 1 and 2 */
XSc = CENTER; /* left edge of central regions *1

XEc = CENTER + width; /* end of central regions -/

XSr =RT-MARGIN - 1 - width; /* left edge of regions 6 and 7 I
XEr =XSr + width; /* end of regions 6 and 7 ~
/* determine background intensity for each region */
tval = WHITELEVEL; /* initial threshold value ~
cval -findthd(XScXEc,Ya~tval); /* find threshold for region 1 /
tval = findthd(XSl,XEl,Yb,tval); /* find threshold for region 2 1/
tval = findthd(XSrXEr,Yb,tval); f* find threshold for region 3 I
cval = findthd(XScXEc,Yc,tval); I* find threshold for region 4 '

tval = findthd(XSI,XEI,Yd,tval): /* find threshold for region 5 ~
cval = findthd(XSc.XEc.Ydtval); /* find threshold for region 4 /

tval = findthd(XSr,XEr.Yd,tval); /* find threshold for region 5/
thr-eshold(GRNLUT0.,HIGHEST,tval); /* threshold GREEN LUT ~
return tval; /* return threshold *

* determine background of region defined by the parameters passed
* returns the darkest background level
*'1

findthd(int xs, int xe, int y, int T)

mnt pixval; /* pixel value *
int i; /* scratch counter ~

for (i-xs; i~xe; i++){

pixval - rpixel(i~y); 1* read pixel value *
if(pixval >GRAY) /* light pixels assumed to be *

T - min(T,pixval); /* background, take darkest *

return T; /* return new threshold *

I" end of file CLIP.C ~

109

" FTLENA- TAG.C
" DEPENDENCIES called by SEMEX main() and calls semio functions
" LAST MODIFIED 12 Mar 91 by LEE YEAW-LIP

*PURPOSE: Labels and identifies each feature in the image. Reads pixel-
*by-pixel, left to right, top t~o bottom. and assigns a unique
*ID (fid) number to each feature (agglomeration of pixels) so
*that they can be processed by size() or saved for later
*processing. If there are more than 254 features, a groul: ID

* (gid) is also given. The tag() function requires a binary
* image obtained with the clip)) function where
*Background WHITE_LEVEL and Feature == BLACK_-LEVEL

iincLude "globalbh f* required for all SEMEX files ~
Itinclude <timebh> fft required for time functions ~

static mnt fid; /ft feature indices ~
statisc int gid; /* gid =fid\HIGH f
statVic mnt maxfl; /* max feature size ~

tagmain(

extern int tag(WINDOWPTR w); /* prototype declaration ~
WINDOWPTR wn; /* window pointer */
mnt watrib, batrib: I* window, border and ~
char c;

watrib =v setatr(WHITE,BLUE,O,O); I" window color *
batrib =v setatr(RED.WHITE,O,BOLD); f* border color ~
wn =wn open(500,8,13,50,lO,watrib,batrib); /* open a dialog window '
if (1wn)(

printf("Xn\tUnable to open window. Aborting..)
exit (1);

wn._tmtle(wn,' TAGGING IMAGE *)

if ((fp = fopen(session"a")) NULL)
wnyrintf(wn,"\a\n\n~tUnable to open session file Zs',session);
wnprintf(wn,'\n\n\tPress any key to continue");
getcho;
wn-close(wn); /* close dialog box *1
return(l); /* premature termination *

if (LOADCLIP) / * load CLIPPED image without asking ~
wnprintf(wn'"ri~n\tLoading CLIPPED image");
if(getmm(wn,l)) /* default ext iml ~

goto err; I* error, don't continue ~
else

fprintf~fp,"\nTAG:\tImage from Filename: ls\n",filenane);

else if (!DOSEQ) (/* not processing frame memory ~
v kflusho); /* empty keyboard buffer first *
wnprintf(wn,*k\nntLoad CLIPPED image from disk EN]?");
wnpr2ntf(wn,'\n\tPress [ESC] to QUIT");
c-getch);
if(c *ESC) goto err; /* quit *
if((C- 'Y') 1 (c - y')

if(getim(wn~l)) f* default ext imi l
goto err; /* error, don't continue *

else
fprintf(fp.'\nTAG:\tImage from Filename: Xs~n".filenane);

else fprintf(fp,"\nTAG:")

*perform feature extraction and tagging

if(tag(wn)) { * if error, don't save ~
wnprintf(wn,'\n\n\tPress Any Key to continue");

110

getch(
goto err; /* terminate */

v_kflusho); /* empty keyboard buffer first */
wnprintf(wn,"\n\n\tSave image to Disk File [N]?");
c=getch();
if (c

==
ESC) goto err; /* quit */

ifk (c == 'Y');i (c == 'y'))
putim(wn,2); /* save with default ext .im2 */

fclose(fp); /* close session file *1
wn close(wn); 1* close window *1
return(O);

err: /* error condition */
fprintf(fp,"\n*** TAG ABORTED *");

fclose(fp);
wn close(wn); 1* close window 1/

return(l); /* signal back error /

image feature identification and tagging algorithm

tag(WINDOWPTR w) I' window handle "/

extern void tagrowO(WINDOWPTR w); /* function prototype /
extern void tagrows(WINDOWPTR w); /* declarations */
extern void checkmerge(WINDOWPTR w); / ditto *I
extern int tagmerge(WINDOWPTR w); /* ditto */
extern void step(void); I* ditto /
extern clockt clock(void); /* ditto */
clockt start; /* timing variable */
float elapsed; f* ditto */
unsigned fatrib; 1* field attribute */
char ibuf[10]; /* scratch string *1
static char *emsg = "must be between 2 and 255. Press any key";

fatrib - (BLUE<4) I WHITE I BOLD; /* field color *1
wn clr(w); o /* clear window */
if (!DF_SIZE)

itoa(OVERSIZEibuf,10) 1* convert to string *1
wn-gint(XEQ,NFRM,NFLDw,2,1,"Eliminate features larger than:

fatrib,'_',&maxfl.3.2,255.ibuf,NSTR,emsg);

else 1/ use default max */
maxfl - OVERSIZE; /* feature size */

start = clock(); /* start timer */
wnprintf(w,"\n\n\tTAGGING FEATURES in Progress\n");
fid - LOW; /* initialize feature count */
gid - 0; /* initialize group count */
wnwrap(w,TRUE); /* word wrap ON */
tagrowD(w); /* tag top row /
tagrows(w); /* tag subsequent rows */
fid +- gid*HIGH - 1; I* get total features */
if (fid < LOW) (

wnprintf(w,"\ann\tOverflow has occurred. Fid- Zd-, fid);
wn printf(w."\n\tAborting Feature Extraction-);

return(l);

checkmerge(w); /* check merging window size '/

if (tagmerge(w)) /* merge joined features
return(1); /* signal back error */

wnjprintf(w,"\n\tFEATURE COUNT: d",fid);
elapsed = (float) (clock()-start) / (float) CLKTCK;
wnprintf(w.'\n\n\tElapsed Time: Z.lf seconds".elapsed);
fprintf(fp,"\tTagged Zd features in Z.lf seconds",fid,elapsed);
maplut(GRNLUT,0.IXSIYS,NCCL,NROW); /* update frame memory '/
return(0); /* signal OX back *f

iii

"Tag the top row of the image
" Note that fid cannot exceed HIGH. This is taken care of by step()

voi
tagrowOCWINDOWTR w)

extern void step(void): /* prototype definition *

register x, rp; /* scratch *

for(x -LT-MARGIN ;x RT MARGIN x++) /* start from left edge '

I f(rpixel(x,IYS) =WHITELEVEL

continue; /'* skip background *

/* from here on, pixel is not background */
if ((x 1=LI MARGIN) && C(rp=rpixel~x-l,IYS)) !=WHITE_LEVEL)

wpixel(x.IYS~rp); /* west pixel occupied, adopt ID "

continue;

wpixel~x.IYS.fid); I* no neighbor, give new ID ~
wnprintf(w,"\r\t%5d".fid+gid*HIGH);
stepo; /* increment feature counter '

/* end for x ~

" Tag subsequent rows in the image
" Note that fid cannot exceed HIGH. This is taken care of by stepo)

void
tagrows(WINDOWPTR. w)

extern void step~void);

register xl; /* scratch *
register x, y; f* current pixel location *1
mnt rp; f* pixel value */

for(y - 1 y < NROW ; y++) /* start from top edge + 1 *

for(x LTMARGIN ;x < RTMARGIN ;x+--) f* start from left edge '

if(rpixel(x,y) -- WHITE_LEVEL
continue; /* skip background *

/* from here on, pixel is a feature */
if((x !- LTMARGIN) && ((rp-rpixel(x-l,y)) !- WHITE_LEVEL)

wpixel(x,y,rp); /* west pixel occupied, adopt ID *
continue;

if((rp-rpixel(x,y-1)) !-WHITELEVEL

wpixel(x,y~rp); I* north pixel occupied, adopt ID ~
continue;

wpixel(x,y,fid); /* no N/W neighbors, give new ID *
/* Check rest of row for connectivity */

xl = x + 1: /* start with east neighbor *
while~l)

if(rpixel(xl,y) - WHITELEVEL){/* end found *
wpixel(x,y,fid); /* assign ID */
wnprintf~w, '\r\t%5d",.fid+gid*HIGH);
step(); /* increment feature counters *
break; /* done *

iff (rp-rpixelcxl~y-1)) !- WHITE_-LEVEL)C/* merge
-qpixel~x,y,rp); /* use north pixel's ID ~
break;

112

xl++; /* move further east */

} /* end while */

1 /* end for x 1

/* end for y */

Checks relipgility of merge algorithm by comparing the maximum feature
" length, maxti, and the density of the features

v.d
void

checkmerge(WINDOWPTR w)

int safesize; /* safe max window size */

safesize = (int) (NROW /((int)(fid/(HIGH+l)) + 2));
if (maxfl > safesize) (

wn clr(w); /* declutter the screen */
wnprintf(w."\a\n\tSizing window cannot support Id features",fid);

wnprintf(w,"\n~tShrinking window from Id to Id pixels",maxfl,safesizp);
wnprintf(w,"\n\tAny larger features will be removed");
wnprintf(w,"\n\tlf this happens, Clip the image again");

wnprintf(w,"\n\tat a lower threshold so as to reduce");
wnprintf(w,-\n~tthe number of features.");
wnprintf(w,"\n\n\tPress any key to continue");
maxfl = safesize;

OVERSIZE = safesize;
getch();

else wnprintf(w."\n\tLargest permissible feature is Zd pixels",safesize).

The following algorithm to merge joined features will fail if
maxfl is set too large and there are many (>254) small features
bunched together.

tagmerge(WINDOWPTR w)

register xl,yl; /* in-window variables *1

int x,y; /* current pixel indices */
int id; /* current pixel ID */
int nid; /* ID of pixel above */
int xleft,xrightytop~ybot; /* sizing window limits */
int found, mergedone, nmerged = 0; /* tracks merging */

wnprintf(w,"\n\tCombining joined features...\n-);
for(y - 1 ; y < NROW ; y++ /* start from row 1 */

ytop - y - maxfl; /* set row search limits */

ybot - y + maxfl;

if(ytop < 1) ytop - 1;
if(ybot > NROW) ybot NROW;
for(x - LTMARGIN ; x ' RTMARGIN ; x

+ +
) /* left edge to right */

id - rpixel(xy); /* get current pixel ID
nid = rpixel(xy-1); /* get ID of pixel above
if((id = WHITE-LEVEL) II (nid - WHITELEVEL) ii

(id -- nid)) /* skip if background or */
continue; /* part of same feature */

/ Joined features exists. Merge */
found - FALSE; /* exist but not found *1
xleft - x - maxfl; /* set column search limits

xright - x + maxfl;
if(xleft < LTMARGIN) xleft - LTMARGIN;
if(xright > RTMARGIN) xright - RTMARGIN;

for (yl - ytop ; yl < ybot ; yl+-+) /* scan vertically
mergedone = TRUE, /* assume merged */

113

for (X1 = xleft. x1 xright; xl+4) I* scan horizontally *i
i f (rpixPl(xlyl) ==id) *I samre feature *'/

found = W,-UE, I' found the cuipr.-.'
wpixe1(xly1,nid); /* change its ID */
merge done = FALSE; I* assumption wrong =

if (found && merge-done) break; /* culprit found and merged
/* end for yl */

/* one feature has been merged ~
wn printf(w, rOtZ5d", i-nmerged)-

/- decrement feature count
if (fid LOW) {/* checX */

wnprintf(w,-\a\n\n\tUnderflow has occurred. Fid = Zd", fid);
wnprintf(w.\kn\tAborting Feature Extraction");
return(!) I* signal error back *

end for x ~
/* end for y */

TOTAL = (longlfid; /* save the grand total ~
return(C); /* signal OK back *

"step)) allocates a unique pair of numbers to each feature, namely
"a feature ID number (fid) and a group ID number (gid). Allocation

" is based on the Limitation that fid must not exceed 8 bits. Therefore

"increment fid until it reaches HIGH
"then reset it to LOW and increment gid
"This is necessary as pixel value is 8 bits only

vc ii

step) void)

fid-'.

if) fid HIGH(
fid = LOW,

/* End of file TAG.C ~

114

" FILENAME SIZE.C
"CALLED BY: semex main() and calls semio.c functions
"LAST MODIFIED : 12 Mar 91 by LEE YEAW-LIP

PURPOSE :This routine uses an existing or saved image that has

* been clipped with clip() and tagged with tagc(. The output

of this program is a tabular output of the calculated
area. X-Chord, and Y-Chord that is suitable for

* input to a statistical analysis program..

NOTES: TOTAL (no of features) is automatically set by TAG.
SBackground ==WHITELEVEL
SFeature =-BLACK LEVEL

oinclude -global.h* f* required by all SEMEX files ~
#include *time.h, /* required for time functions ~
,,include string.h /* required for string functions

static float yscale. !* vertical scale factor *1
static mnt fid. / track number of features

static mnt maxfl, minfl. /* tracks max and min features
static mnt xmax, y.max, /* max feature lengths "
static mnt xrni , , ym I, / min feature lengths ~
static long minarea. maxarea, /* smallest and largest areas *

statiz long *aptr; 1" pointer to area store ~
static i *xptr, *yptr; /* pointer to x,y stores ~

sizemaino

extern mnt size(WINDOWPTR w); /* prototype declaration *
WINDOWPTR wn; /* window pointer */
int watrib, batrib; I* window, border and *
unsigned fatrib; /* field attributes ~
char c;

watrib - v setatr(WHITE BLUEO.O0); /* window color ~
batrib - v setatr(RED.WHITE,O,BOLD); /* border color ~
wn - wnopen(500,8,12,50,10,watrib,batrib); /* open a dialog window ~
if (!wn)

printf("\n'itUnable to open window. Aborting..)
exit Cl);

wn-title(wn," SIZING FEATURES")
if ((fp - fopen(session."a")) NULL)

wnprintf(wn,"\a~n~n~tUnable to open session file Zs",session);
wn,,printf(wn. "\n~n~tPress any key to continue");
getcho;
wn-close(wn): /* close dialog box ~
return(l); premature termination ~

if (LOADTAG) {/* load TAGGED image w/o asking ~
wnprintf(wn. "\n\n~tLoadin& TAGGED image");
if (getim(wn.2)) /* if error don't size *

goto err; /* termlinate ~
else

fprintf(fp"-\nSIZ tlmage from Filename: Wsn",filenane);

else if (!DO -SEQ) f 1* not processing frame memory ~
wrprintf(wn,"\n\n\tLoad 1I".GGED image from disk [NJ?");

wnprintf(wn,-\n\t~ress [ESCI to QUIT");
v-kflushC); /* empty keyboard buffer first *
c - getch().
if(c -ESC) goto err, /* quit/
if(c 'Y'II c - 'y-) /* read image with ext .1m2 *1

if (Setim(wi.2)) /* if errol don't size ~
goto err, /* terminate *1

else

115

fprintf(fp,"\nSIZE:\tImage from Filename: Xs\n",filename);
I
else fprintf(fp,"\nSIZE:"); /* process frame memory contents "I

/* feature sizing */
if(size(wn)) { /* if error don't save */

wnprintf(wn."\n\n\tPress any Key to continue");
getch();

goto err; /* terminate */

wnprintf(wn,"\n\n\tSave data [Y]");

v_kflush); /* empty keyboard buffer first 'U

c = getcho); /* get user response '1
if ((c!='N') && (c!='n')) outdata(); /* display data */

fclose(fp); /" close session file */

/* free dynamically allocated memory *I

free(xptr);
free(yptr);
free(aptr);
v_kflush(); /* empty keyboard buffer first "I
wnprintf(wn,"\n\n\tSave image to Disk File [N]?");

c=getch(); /* get user response */

if(c == 'Y'Il c == 'y') {
wnprintf(wn,"\n\n\tUpdating frame memory...");

maplut(GRNLUT,0,IXS,IYS,NCOL,NROW); /* update frame memory */

putim(wn.3): /* save image with ext .im3 *I

wn_close(wn); /* done, close window */

return(0);

err: /* terminate phase '/

fprintf(fp,"n*
*
* SIZE ABORTED ***");

fclose(fp); /* close session file "/

wn close(wn); /* close window *1
return(1);

/* feature sizing algorithm /
size(WINDOWPTR w) /* pass window pointer */

extern clock t clock(void); /* function prototypes */

extern int outdata(void); /* ditto */
extern void pixelsize(WINDOWPTR w); /* ditto */
clock t start; /* timing variable */
float elapsed; /* ditto */
unsigned fatrib; /* field attributes /

char c; /* scratch */
char ubuff[20]; /* scratch string buffers

/* help message strings /
static char *hlpl - "Sets vertical pixel scale factor [1]";

static char *hlp2 - "Features largetr than this will be discarded [100]":

static char *hlp3 - "Features smaller than this will be discarded [1]";

/* error message strings */
static char *emsgl = "must be between 0 and 100. Press any key";

static char *emsg2 - "must be between 2 and 256. Press any key";

static char *emsg3 - "must be between 1 and 255. Press any key";

static char *emsg4 - "must be between 100 and 9999. Press any key";

wnclr(w); /* clear window "/
fatrib - (BLUE-4) I WHITE I BOLD; /* field color */

if (DF_VSCALE)
yscale - VSCALE; 1* use default conversion /

else I
sprintf(ubuff,"%7.2f",VSCALE); /* convert to string */

wngfloat(XEQNFRMNFLD.w,22,2"Vertical Scale factor: ",

fatrib,' ',&yscale,7,20.0,100.0,ubuff,hlplemsgl);

if (DF SIZE) /* set feature limits /

minfl - UNDERSIZE;
maxfl - OVERSIZE;

116

else
itoa(UNDERSIZE,ubuff,10); /'* convert to string ~
wn_gint(XEQ,NFRM.NFLD,w,4,2, "Discard Features SMALLER than:

fatrib,' _ ',&mninfl.3,1l255,ubuff,hlp3,emsg3);
itoa(OVERSIZE,ubuff,10); /'* convert to string ~
wngint(XEQ,NFRM.NFLD,w,6,2. "Discard Features GREATER than:

fatrib,'_ ,&maxfl,3,2,256,ubuff,hlp2,emsg2);

Dynamically allocate memory for the TOTAL number of features
*generated by TAG. If this is not available, user option is allowed.

if (TOTAL - 0)

wnjirintf(w,-kn~ntlmage not recently tagged. Continue [N)?)
V-kflush(); /* prevent spurious input ~
c = getch(); /* get user response *

if ((c '=Y') 11 (c -= 'y))
itoa(2000,ubuff, 10);
wngint(XEQ,NFRM.NFLD,w,8,2, "Max Number of Features Expected:

fatrib,' _',&TDTAL,4,100,9999,ubuff,hlp2,emsg4);

else return(l); /* don't size *

} * end if */

xptr = (mnt ~)calloc(TOTAL,sizeof(int));
yptr = (mnt *)calloc(TDTAL,sizeof(int)):

aptr = (long *)calloc(TOTAL,sizeof(long));
/* Check for successfull memory allocation *

if('xptr 1 lyptr 11 'aptr) {
wnprintf(w,"\aln\tNot enough Memory to allocate!");
wnprintf(w,-WntReduce TOTAL -Zd and try again", TOTAL);
wn~printf(w,"\n\n\tPress any key to continue");
getcho ;
return(1);

fprintf(fp,'')tVertical scale: If pixels/unit length".yscale);
fprintf(fp."\nltMin Length spec: %4d~tMax Length spec: 14d-,minfl,maxfi);
/* Begin Sizing Routine 1/

start - clock(); /* start timing ~
wn_wrap(w,TRUE); /* turn wordwrap ON/
wn~printf(w. "\n~tSizing featuresln");
pixelsize(w); 1* size image in pixels *
elapsed -(float) (clocko-start) / (float) CLK _TCK;
wnyprintf(w,'*\n\n\tElapsed time: Xlf seconds", elapsed)
fprintf(fp,i\nltSizing took I.lf seconds",elapsed);
return(0); /* signal OK back *

Size features by pixel count. No scaling factors taken into account.

void

pixelsize(WINDOWPTR w)

register mnt xl, yl, /* scratch indices *
int X, y, /* current pixel location ~
mnt currval, /* current pixel value *
int xleft. ytop, xright, ybot: /* sizing box *f
int xlen-0, ylen-0, I* zeros feature dimensions ~
long pixarea=0. 1* zeros feature areas/
in. reect-C /* zeros rejectsf
int too _large-0 /* zeros oversized features ~
ir.- too _smallQ., 1 zeros undersized features ~

fd- 1. f* Initialize Feature counter C

Xma /* Max X-Cbord reset to zero ~
- -. /* Max Y-'Chord reset to zero ~

urin 1* Min X-Chord reset to max ~
vmin/* Min Y-'Chord reset to max ~

m.;7 sra N-
7 1:. * KIROW /* Min area reset to max ~

117

maxarea = 0; /- Max area reset to zero */

for(y = IYS ; y < NROW ; y++) /* do for all rows */

if(fid == TOTAL) break; /* Quit when all features sized */
ytop = y; /* set up y coordinates '/

ybot = y + maxfl; /* for sizing box */
if(ytop

<
IYS) ytop = IYS;

if(ybot > NROW) ybot = NROW;
for(x - LTMARGIN; x < RTMARGIN; x+-+) /* do for all columns I

currval = rpixel(x,y); /* get current pixel value '/
if(fid == TOTAL)break; /* all features sized */
if((currval == WHITE_LEVEL) 11 (currval == BLACKLEVEL)

continue;

/* pixel is part of feature yet to be sized *1
xleft = x - maxfl; /* Set up x coordinates */
xright x + maxfl; /* for sizing box */
if(xleft < LTMARGIN) xleft - LTMARGIN;
if(xright > RTMARGIN) xright

=
RTMARGIN;

for(yl = ytop ; yl < ybot ; yl++) /* do for all rows in box */

for(xl = xleft ; xl < xright ; xl++) /* do for columns /

if(rpixel(xl,yl) 1= currval) continue; /* skip */
plxarea++; /* increment pixel area /
xlen++; /* increment x length -/
wpixel(xl,yl,BLACKLEVEL); /* mark off as counted -1

/* end for xl */
if(xlen-=O) break; /* passed bottom edge /
if(xlen > xptr[fid]) /* update max x length */

xptr[fid] = xlen;
xlen = 0; /* reset x length */
ylen++; /* increment y length */

/* end for yl */
yptr[fid] = ylen; /* store max y length */
aptr[fid] - pixarea; /* store max area */
ylen

=
0; /* ready for next feature */

pixarea = 0;
/* Collect statistics for rejects */
if (xptr[fidJ < minfl II yptr[fid] < minfl) (

too small++;
reject++;

xptr[fid] - 0; /* re-initialize x element */
yptr[fid] - 0; /* re-initialize y element */
continue; /* don't increment fid *1

if(xptr[fid] >= maxfl II yPt-rfid] > maxfl) {
too large++;
reject++;
xptrifid] - 0; /* re-initialize x element */
yptr[fid] - 0; /* re-initialize y element */
continue; /* don't increment fid *1

t* Calculate Min/Max values */
xmax = max(xmax. xptr[fid]); /* widest feature */
ymax - max(ymax, yptr[fid]); /* tallest feature *A
xmin = mn(xmin, xptr[fid]) ; /* narrowest feature */
ymin - min(ymin, yptr[fid]) ; /* shortest feature */
maxarea - max(maxarea, aptr[fid]) ; /* largest feature */
minarea = min(minarea, aptr[fid]) ; /* smallest feature */
fid++; /* get next feature */
wn printf(w,"\r\tSd",fid);

/ U' end for x */
/* end for y */

TOTAL = (long)lfid; /* Record new total 'V
wn_clr(w); /* clear dialog box */
wnprintf(w,"\n\n\tSized ZIld Features within specifications",TOTAL);
fprintf(fp,'\n\tZld Features were within specifications",TOTAL);

118

if (too small > 0)
wnprintf(w,"\n\td Features were less than %d pixels',too_small.minfl);

fprintf(fp,'\n\tld Features were less than Zd pixels",too smalLminfI);

if (too large > 0)
wnprintf(w,'\n\tld Features were greater than Id pixels",too largemaxfl),

fprintf(fp,.nhtld Features were greater than Xd pixels",too large,maxfl);

if (reject > 0)
wnprintf(w'\n\td Features were REJECTED",reject);

fprintf(fp,"\n\td Features were REJECTED",reject);

Output routine to display x and y dimensions, and 2 areas
AREAl assumes feature is elliptical and uses PI*xlen*ylen
AREA2 converts directly from pixel area to feature area.

outdata(void)

const float P14 = 0.785398; /* define pi/4 *1
FILE *fdata; /* data file pointer /
WINDOWPTR w; /* window pointer */

int watrib, batrib; /* window, border and */

unsigned fatrib; /* field attributes */
int j; /* scratch index */

float Cx, Cy, Ca; /* Conversion constants /

float fxonax, fymax, fxnin, fymin; /* scaled statistics *f

float xlen, ylen; /* scaled dimensions */
float area, fmaxarea, fminarea; /* scaled areas */
char ubuff[201. datafile[203; /* scratch string buffers "/
char c;

watrib = v setatr(WHITE,BLUE,0,0); /* window color */
batrib - v setatr(REDWHITE,0,BOLD); /* border color */
w = wnopen(800.O,13,50.23,watrib,batrib); /* open a dialog window *1

if (!w)

printf("\n\tUnable to open window. Aborting...");
exit(l);

wn title(w," TABLE OF FEATURE DATA);
/* Calculate Conversion Constants required to properly scale and convert

* pixels to dimensioned units. Depends on VSCALE and ASPECTRATIO.
* ASPECTRATIO is defined in SEMEX.C
*/

Cx - ASPECT_RATIO/yscale; /* x conversion constant */
Cy = 1.0/yscale; /* y conversion constant *I

Ca - Cx*Cy; /* area conversion constant "/
fprintf(fp,"\n\tConversion constants: Cx-%f CylZf CaZf", Cx, Cy, Ca);
wn_printf(w,"\n\n\tlmage filename: %s",filename),
chgext(datafile,filename,".dat"); /* change extension to .dat */
fatrib = (BLUE-<4) I WHITE I BOLD; /* field color */
wngtext(XEQ,NFRMNFLD,w,4,1,"Save DATA in filename:

fatrib,' ',g8,datafile,NSTR.NSTR);

wn_printf(w,"\n\n~tSending output to FILE ls\n",datafile);

if((fdata - fopen(datafile,"w")) - NULL) {
wnprintf(w,"\a\n\n\tCANNOT Open output file Is\n", datafile);

wnprintf(w,"\n\tPress Any Key to continue");
getch();
wn close(w);
return(l);

for(j = 0 .j TOTAL ; j+)

xlen = xptr(j] * Cx; /* true x length "/
ylen = yptr[jl * Cy; / true y length I/

fprintf(fdata,"%6d %10.3f %10.3f Z.3f 18.3fkn", j+1, PI4*xlen*ylen,*(aptr+j)'Ca.xlen.ylen);

119

wnprintf(w,"\n ID NO AREA_C AREA-M X-Chord Y-Chord\n");

for(.j - C j < TOTAL;j+)
xlen = xptr[j] * Cx; 1* true x length *
ylen =yptr~j] * Cy; I* true y length *
wnprintf(w,"\n%6d 210.3f %10.3f %8.3f 28.3f", j+1, P14*xlen*ylen, *(aptrJ)*~Ca, xlen. yle-,
if ((J2O) - 19) (I" pause on full page -/

'n_printf(w,"\n\tPress [ENTER) for MORE or [ESC] to QUIT");
if ((c =getcho) -ESC) break;/* quit if ESC pressed *

if (j TOTAL - 1) /* not end yet */
nprintf(w,'\n ID NO AREA_C AREAN X-Chord Y-Chord\n")

fclose(fdata); I* close data file *
I* display statistics ~
xlen - xinax*Cx;
ylen - yrnax*Cy;
area = maxarea'Ca;

wnprintf(w,'\n\n AREAM X-Chord Y-Chord');
wnprintf(w. -\n Max 110.3f 210.3f 210.3f", area, xlen, ylen);
fprintf(fp. "\n\t AREAN X-Chord Y-Chord");
fprintf~fp, -\n\tMax Z10.3f Z1lO3f 210.3f", area, xlen, ylen);
xlen - xonin*Cx;
ylen = yynin*Cy;
area = minarea*Ca;
wnprintf(w, -\n Min 110.3f 210.3f 210.3f", area, xlen, ylen);
fprintf(fp, -\n\tMin 210.3f 210.3f Z10.3f\n", area, xlen, ylen);
wnprintf(w,-\n\n\tPress Any Key to continue");
v kflusho);
getcho;I
wn-close(w);
return(O); /* signal healthy end *

End of file SIZE.C

120

" F:LENAME: ANALYZE.C
" CALLED BY: SEMEX main)
" LAST MODIFIED: 14 Mar 91 by LEE, YEAW-LIP

PURPOSE: This set of routines analyzes the data files put out by
* the size) functions. 't first allows the user to specify

the data files and then merges the data from them into an
*array The volume and data are then calculated and a
* histogram built using histovol(). This can be plotted
*using SEM M inside MATLAB.

einclude 'gloral.h /* required by all SEMFEX modules */
.,ncLude 'dos.h- /* dos prototype definitions */
inc .ude math h, /* math prototype definitions */

"incLude <string h> /* string handling prototype defn */

tv)edef struct { /* structured list of file pointers *1

char name[.i3 /* string to contain data file */
-,:ST,

tedef struct 1* Ma 'ab MAT-file structure "/
Long type. /" type */
long oruws. / row dimension */
long ncols, colun dimension '/
long imagf, /* flag indicating imag part /
long namLen. /* name length (including NULL) */

F rmatrix,

static SLIST *list: /* Define pointer to list */

static char sdate(13]: /* date string */
static nt fatrib; /* field attribute */
static float *optr; /* pointer to area store */
static size_ t memsize; /* size of memory allocated */
static int Nfiles; /* number of data iiles */

analyze(

extern int mergedata(WINDOWPTR wn); /* prototype definition */

extern void histo vol(WINDOWPTR wn); /* ditto */
WINDOWPTR wn; /* window handle *f
int watrib, batrib; /* window and border attributes */
char c; /* scratch for user response */

watrib = vsetatr(WHITE,BLUE,0,0); /* window attribute */

batrib - v_setatr(REDWHITEO,BOLD); /* border attribute */
fatrib - (BLUE << 4) I WHITE I BOLD; /* field attribute defined */
wn - wnopen(500.8.13,52,13,waLribbatrib); /* open dialog window */

if(lwn) {
printf('\a~nUnable to open window. Aborting...");
exit(1);

wn title(wn," ANALYSE FEATURES);
if ((fp - fopen(session, a")) = NULL)

wnprintf(wn,-\a\n\n\tUnable to open session file %s",session);
wnprintf(wn,\n\n\tPress any key");

getch()

wn close(wn);
return(1);

else /* session file opened */

fprintf(fp,"\nANALYZE:Merging data files");
if (merge data(wn)) /* merge data files */

goto err; /* terminate if error *I
histo vol(wn), /* histogram the data */

fclose(fp); /* close session file */
wn close(wn); /* close window */

121

return) 0);

err: /* error trapped /

fprintf(fp,'\n... ANALYZE ABORTED**;

fclosefp); /* close session file ~
wn-close(wn), /* close window *

returi(O);

merge data)) prompts the user with all files with extension .dat from

which to merged data. Selected files are written into a list

mezge-data(WINDOWPTR wn)

extern *;oid get dates(unsigned date); I/' prototype definition '

extern int extract _deta(WINDOWPTR wn, int Ncol); I* ditto */

char c ; /* scratch for user response

iot Areatype; /'* defines type of area to use"

struct find-t d_ file. /* structure of data files "

wn._title(wn,' SELECT DATA FILES ");

Nfiles =0; I" initialize file counter

wn_ clr(wn); I' clear dialog box "I

dos -findfirst(",dat. _AN)R.MAL, &d-file); /* get first occurrance ~
get-dates(d_ file.wr-date); /* returns date string to sdate ~
wnprintfcwn,"\n\n\t DATA FILENAr'E DATE CREATE[));

wn_ locate(wn.4,4); /* place cursor at row,col '

wn_printf~wn,- 212s Is \n\n\tlnclude(Y] ?",d_ filenameasdate);

v-kflush)), /' empty keyboard buffer ~
c =getch)); /* get user response ~
if (c-'Y') Ii c-='y') 11 (c=ENTER)) {

if ((list= (SLIST *)calloc(l~sizeof(SLIST))) - NULL) (/* allocate memory v

wnprintf~wn,.\a\n\n\tNo memory to allocate-);

wnyprintf(wn,"\n\n\tPress any key to continue");

getch(;

return) 1); f* signal error back ~

stropyclist[Nfilesj.name,d_ filename); 1* save filename into list "

Nfiles-+ /* increment file count ~

f* find the rest of the data files ~
while C _dos_findnext(&d_ file) -0)

get dates(d file.wr -date); /* returns date string to sdate *

wn_ locate(wn,4,4); /* place cursor at row,coL -/

wnprintf(wn," 112s Is WnntFile Count: %3d\tlnclude[Y] ?',d -filenamesdateNflles);

v kflush)); /* empty keyboard buffer/

c getcho; /* get user response *
if C(c--'Y') II (c'y') 11 (c-ETER)) I

if ((list (SLIST *)reailloc((void *)list,(Nfiles+l)*Sizeof(SLIST))) NULL)

wnprintf(wn. "\a~n\n\tNo memory to reallocate");

wn~printf(wn"-\n\n\tPress any key");

getch(;;
goto erri; /* abort *

strcpy(list[Nfiles).name,d-filename); /* save filename into list ~
Nfiles-+; /* increment file counter ~

if (c -ESC) break; /* enough already *

/* end while */

wnprintf(wn'\nWn Id datafiles selected in this directory",Nfiles);

wnprintf(wn." n Press [Enter] to Histogram data or (Esc] to Abort");

v kflush(); /* flush keyboard buffer *

if (getch() - ESC) I* get user response *
goto erri; /* abort *

/* allocate memory for first element *

mernsize -sizeof(float);
if ((cptr - (float *)calloc(l~memsize)) -NULL)

wnjirintf(wn,'*a\n\n\tNo memory to allocate");

wnyprintf(wn,"\n~n~tPress any key");

122

getch(
goto errl; /* signal error back */

wnprintf(wn"\n\n\tUse C)alcuiated or M)easured area [C] ?");
vkflusho; /* clear keyboard buffer "/
c getch(); /* get user response */
if ((c 'M') 11 (c - 'i ')) (

Area type = 2; /* use measured area AREA-M */
fprintfvfp. \n\tExtracting MEASURED Area from");

else
Area type

=
1; /* use calculated area AREAC I/

fprintf(fp,"\n\tExtracting CALCULATED Area from");

extractdata(wn,Area type); /* extract area from col 2 "/
return(0); /" signal back OK */

err!: /* termination sequence '/
free(list); /" deallocate memory '/
return(1); /* signal back abort 'V

Get date string given a dos date code
returns date string to sdate declared static

date format is: bits 0 - 4 ; Day of the month (value between 1 and 31)

5 - 8 : Month (value between 1 and 12)
9 - 15: Year since 1980

void
get-dates(unsigned date)

char *mth; /* month string */
unsigned mm,dd,yy; /* date variables */
static char *month[12] = { "Jan","Feb","Mar","Apr","May",-Jun-,

"Jul","Aug","Sep","Oct","Nov","Dec" 1;

dd = date & Ox00lf; /* get bits 0 to 4 */
mm = (date & OxOleD) >> 5; /* get bits 5 to 8 *I
yy = (date & jxfe00) >> 9; /* get bits 9 to 15 */
sprintf(sdate,"%2u Z3s Z4u",dd,month[mm-1].yy+1980);

123

extract-data() extracts a single column of data from a specified file

extract data(WINDOWFTR wn, int Ncol)

FILE *dfp; /* data file pointer "I
float col(5] 1 scratch airay "/

int fid; /' scratch feature counter

int i; /* scratch counter */

wn clr(wn);

wn title(wn," EXTRACTING DATA);
TOTAL = 0; / initialize total no of features

for (i=0; < Nfiles; 1++) { /* read a data file */

if ((dfp = fopen(list[i].name,"r")) == NULL) { /* read data within '/

wnprintf(wn,-\a\n\n\tCANNOT Open datafile ls",listfi).name);

wnprintf(wn,"\n\n\tPress any key to continue");

getch();

return(l); /* error recovery */

wnprintf(wn,"\n\ts', list(i].name); /* display data file I
fprintf(fp,"\n\t\ts", list(i].name); /* record date file name /

while (fscanf(dfp," 2d If If If If ", &fid,&col[l],&col[2],&col[3],&col[4]) EOF)

/* read in data */

cptr[TOTALi = col[Ncol]; /* use requested column *1
TOTAL+; /* increment total # *1

/* allocate memory for 1 more element */
memsize -' sizeof(float); /* increase memory counter */

if ((cptr = (float ') realloc((void *) cptr, memsize)) == NULL)
wnprintf(wn,"\a\n\n\tReallocation Failed. Out of memory.");

wn_printf(wn,'"\n\n\tPress any key");
getch(;

fclose(dfp); /* close data file *1
return(l); /* error recovery */

/* end while fscan dfp */
fclose(dfp);
wn_printf(wn,"\nl0d extracted. Running Total is %ld", fid, TOTAL);
fprintf(fp,"2l0d extracted. Running Total is ZId", fid, TOTAL);

1 /* end for loop */
v_kflush(; /* empty keyboard buffer */
wn_printf(wn,"\n\n\tPress (Enter] to Histogram or [Esc) to Quit");

free(list); /* deallocate memory */
if (getch() - ESC) return(l); /* quit if ESC pressed 'I
return(0); /* successful */

/* histovol() uses the merged data from merge_data(), converts it to volume
and collates the data into 38 bins so that a histogram is obtained.

*/

#define BINS 38 /* No of bins */

void
histovol(WINDOWPTR wn)

extern void savemat(FILE *fptr, int type, char *pname, /* prototype definition */

int mrows, int ncols, int imagf, /* for saving data
double *preal, double *pimag); /* in MATLAB form */a

char histfile[20]; /* histogram file */

FILE *fh; /* file pointer */
double PI = 3.141593; /* define pi */

double UPPER - 180.0; /* upper limit of histogram
double STEP = 0.8264; /* same as Malvern MasterSizer */
static double volume[BINS]; /* bins to contain volumes */
static long count(BINS]; /* bins to contain counts */
double limit[BINS+l1; J* array of limit values *1
double tot vol = 0.0; /* total volume */
double toosmall = 0.0; /* bin to contain small particles '/

int reject - 0; J* track rejects */
double diam, vol; /* diameter and volume variables *1

124

double C; /* constant =4/3pi =

double R2; /* scratch =Area/P!

' is /' scratch index counters ~
Long j; /- scratch particle counter -'!

double Nf, :; /* scratch for type conversion
char C; /* scratch for user response

wn clr(wn);
wn _title(wn,' HISTOGRAM VOLUMES)

- P1! 4.0 / 3.0; /* constant of proportionality "

limit)0J = UPPER: /* assign upper limit to element 0 "
for (i=D; i BINS; i++)f

limit[1+l] limit~s) *STEP; /* generate limits for each bin '

volume(s) =0.0: /* initialize volume bin ~
count~i] C ; I"' initialize count bin /

wn._printf(wn,\,\n\tCalculating equivalent volumes..)

for (j=O; j I TOTAL; j'-+) { /* repeat for all particles '

/* calculate the equivalent volume assuming a sphere, given area "
R2 = cptr(j]/PI; /* square of the radius '

dias = 2.0 *sqrt(R2); /* diameter of particle *
vol = C pow(R2,1.5); /* volume of particle */
tot Vol +Vol; f'* accumulate total volume *1

/* sieve the volumes and collate into the correct bins *
if (diam > UPPER) (/* too large */

wnjsrintflwn,-\n\tMassive particle Volume=%g, Size=%f',vot,diam);

fprintflfp,"\n~tMassive particle Volume~lg, Size=%f-,vol,diam);
continue;

i= 0;
while (TRUE) { * repeat until right bin found '

if (diam > limit~i+11) { * found *I
volume[iJ += Vol; /* accumulate volume in bin ~
countlts)++; I"' increment count */
break; /* get out of while loop '

else
1++; * check next smaller bin *

if (i - BINS) { * no more bins -/
toosmall +- Vol; /* put these into toosmall '
reject+-+; 1* increment reject */
break; /* get out of while loop *

/* end if-else *
/* end while '

/* end for i */
fprintf(fp,"\n~t%d particles < Zf rejected. Volume- Zg or %6.3f%%",reject~limit(BINS],toosmall,

toosmall*100/tot-vol);
/* display results */
wnyprintf(wn,"\n BIN UPPER LOWER Volume 22 Total Vol Count");
for (i=O; i < BINS; i++)I

if (limit~i] a 100.0) /* use one decimal point only *
wnyprintf(wn,"\n 23d 15.1f 25.1f 210.2f 26.2f 251d",

i+l,limit[i],limit[i+i],volume~i].volume~iJ*100.0/tot -vol,count[i);
else /* use two decimal points *I

wnprintf(wn," n 23d 25.2f 25.2f 110.2f 26.2f Z51d",
a i+l,limit(il~limitli+l]hvolumefi,volume~i]*100.0/tot_vol,count~i]);

if (i%10 9) (/* 10 bins at a time C

wnprintf(wn, "\n~n~tPress [Enter] for More");
v_kflusho; /* empty keyboard buffer C
getch(); /* wait for user response C
if (i !- BINS - 1) /*I not last bin yet */

wn clr(wn); l* generate new screenful ~
wnprintf(wn,"\n BIN UPPER LOWER Volume 22 Total Vol Count'");

U' Print out results '
chgext(histfile,session,'.his"); /* form histogram file name -

125

wnjirintf(wn,-\n~n\tPrinting results to Is' *histfile);
fprintf(fp,**\n\tPrinting results to Is",histfile);
if ((fh -fopen~histfile,"a")) - NULL){

wnprintf(wn,"\a\n~tCANNOT Open file Is",histfile);
wnprintf(wn, "\n\n\tPress any key");

getch()
goto err3; /* premature termination ~

fprintf~fh,-\n Zs: Data from Zd data files. Total Particle count: %ld-,histfileNfile5,TC:AL,
fprintf~fhj-n BIN UPPER LOWER Volume 21 Total Vol Count 22 Toral)
for (i=O; i BINS; i-s-i) /* write to histogram file *I

if (limit~i) > 100.0) /'* use one decimal point only "

fprintf(fh.-\n 73d 15.1f 25.1f 210.2f 26.2f 151d 26.2f..-I. l~
limitfis-iC volume(i],volume~i]*100.0/tot volcountl],count[il0C/0:)ALK.

else /* use two decimal points "/

fpr-,ntf(!h,'\n %3d 15.2f 25.2f 110.2f 26.2f Z51d Z6.2f is,

fclose(fh); /* close histfile *I

wnprintf(wn,\n\t%d Files extracted; Particle Count - %ld",Nfiles,TOTAL);
wnmprintf(wn."\n\tGenerate a MATLAB MAT-file [Y] ?");
v-kflushtl; /* prevent spurious inputs A

c =getcho); /* get user response *
if (c !-'N) && (c !='n')) {/* generate MAT-file *

chgext(histfile, session , mat");
wi. clr(wn);
wn gtext(XEQ,NFRM1,NFLD,wn,4,4,"MATLAl MAT-filename: ,fatrib, '' 18, histfile.NSTRNST)
Wnprintf(wn"-\n~n~tPrinting MAT-file Is ',histfile);

fprintf~fp,'\n\tPrinting MAT-file Is-,histfile);
if ((fh - fopen(histfile,'w+b")) -NULL)(

wnyprintf(wn,"\a\n~n\tCANNOT Open file Zs",histfile);
wnprintf~wn,"\n\n\tPress any key");
getch(;
goto err3; /* premature termination ~

Nf - double)Nfiles; /* for proper type casting/
T -(double)TOTAL; /* ditto ~
/* MATLAB variables will be:

* 'Nfiles' ,'total' 'limit', 'totalv' and 'volume'

savemat~fh. 0, "Nfiles". 1, 1, 0, &Nf. (double *)0.0);
savemat(fh. 0, "total", 1, 1, 0, &T. (double *)0.0);
savemat(fh, 0, "limit", 1, BINS+l, 0, limit. (double *)0.0);
savemat(fh, 0, "volume", 1. BINS, 0, volume, (double *)0.0);
savemat(fb. 0, "totalv", 1. 1. 0, &tot vol, (double *)0.0);
savemat(fh, 0, "count", 1, BINS, 0, (double *)count, (double *)0.0);
fclose(fh); /* close MAT-file *

err3: /* terminate stage ~
free(cptr); /* deallocate dynamic memory *

126

"savemat - C language routine to save a matrix in a MAT-file.
"Author j.N. Little 11-3-86
Adapted by Y.L. Lee 25 Feb 91

VZD 1

savermat(fptr. type, pniare. mrows, ncols, imagf, preal, pimag)

i:LF '*fptr; /- File pointer -/
itype: /* Type flag: 0 for PC

f* Add I for text variables. I/
/* See LOAD for more info,.

in.mrows; I~row dimension */

t.nools; /~column dimension *'i

in mag!, / imaginary flag */

cl: *pname; 7'pointer to matrix name

22 prea'l; 1 pointer to real data
:oo -pimag: 1' pointer to imag data

Fmatrix x,
mnt ron.

x type (Long) type;
" mrows (Long) roos:
" ncoLs =(long) nrols:
ximagf =(Long) imagf;
x namlen =(long) (strlen(pname) + 1);

mn = x.mrows -xncois;

fwrite(&Lx. sizeof(Fmatrix), 1, fptr);
fwrite(pname. sizeof(char), (int)x.namlen, fptr);
fwrite(preal, sizecf(double), n, fptr);

if (imagf) (
fwrite~pimag, sizeof(double), mn, fptr):

/* End of file ANALYZE.C *

127

" ILEN.AME SEMIC C
* ALLED BY Various SEMEX functions

,LAS: MD:FIED Mar 91 by LEE YEAW-'.F

P 'fRPOSE getimrwn) - reads in an image from disk

putim(w.n - saves an image Lo disk

where n appends img to filename (raw image;

appends im, to 4:lename (clipped

appenas im2 to filename (tagged)

appends im3 to filename (sized)

chgext*fd, fs*ext - replaces the extension in the sojr-e

and copies it to the destination

S E All these functions have been declared globally

,:nclude globalh /* reqcuired by all SEM EX fi:e-,

4,include <string.hl /* string handling prototypes

;i.nclude <math.ha /* math function prototypes *.

static chai -digit = '1234567890'; /1 define a digit */

* Read an image from dis'

passes a window handle and the default file extension where

S 0- .img, 1: imi, 2 ..im2. 3 im3

getim(WINDOWPTR w.int n)

int errval; /* scratch for errors "/

char c, *line2; /* scratch */

char *margins; /* loc of margins in comline */

char *vs; /* loc of VSCALE in comline */

char *Im. *rm; /* left and right margin loc *

static char fbuf[MAXFLEN]; /* filename buffer */

unsigned fatrib; /* field attribute */

wn clr(w), /* clear screen */

wn printf(w."\n\tREAu IMAGE FROM FILE -);

strcpy(fbuf.filename); /* make copy of filename */

while(l)

switch (n) /* decide which default ext */

(/* to use */

case 1:

chgext(filename.fbuf,".iml'); /* clipped image */

break;
case 2:

chgext(filenamefbuf,-.im2"); /* tagged image 1
break;

case 3:

chgext(filenamefbuf,".im3"); /* sized image */

break;

case 0:

default:

chgext(filename,fbuf,.img); /* raw video image *f

break;
/* end switch /

fatrib - (BLUE<<4) I WHITE I BOLD; f* field color */

wngtext(XEQNFRM,NFLD,w,2,1,"Filename: ",fatrib,
I ' 18,fsienameNSTRNSTR);

errval = readim(IXSIYS.NCOL,NROWfilenamecomline);

if(errval -= 0) (/* image successfully read */

wn_wrap(w,TRUE); /* allow for word wrap

wn_printf(w,'\n COMMENTS: \n Zs' comline);

/* check for 2nd comment line */

if ((line2 = strrchr(comlne.'\n')) I- NULL)

/* Locate the start of the keyword "Margins- /

if ((margins - strstr(line2.-Margins=")) I- NULL)

128

r-srn exists, extract them

margins = st rprxmarinsdilit, * 'ocate sta tn ;.:n

, MART,:N = a :mar gns . '* extra-t.

rggin5 = F: brkxmaglns locate Se: atc:

sk.-: v,7: :wTna an:! exstract rgtmargir
5 c: N e--rris I' xt ra t 1 1 , t

locate t: a I th '.o VSCALE
*f ..vs =strstr :ne.ZV>FhE] ' NULL)
S V',-ALE exists. extra-t ir

vs st:rr .'d t . locate starti:,n ,

CA float atf c vertical scale facto:

w._F w, lrn t ress an'.' ke" tc coitlnue),
v kflush];, ' prevent premature keystroc.
getch[)

returns). /' all is well *

else { ' problem */

Aswitch(errval)

case FILEERu-.
wn prrntf~w. \n\ttrrcr opening file\n");
break,

case FORIAT ERR:

wn printf(w. \n\tUnknown file format\n'):

break,
case READ ERROR.

wnprintf(w. \n\tError Reading file\n'),

break.
default:

wnprintf(w,'\n\tUnknown Error Zd\n"errval);

break;
/* end switch *!

wnprintf(w."\a\n\tTrY Again [Y]'\n");

v_kflush(; /* empty keyboard buffer first
c = getcho] /* get response */
if(c -= 'N' II c - 'n') return(1); /* signal problem back */

} /* end if-else */
wnclr(w); /* clear window and try again "/

} /* end while *f

• Save an image to disk
" passes a window handle and file extension where

0: .img, 1: iml, 2: .im2, 3: .im3
*/

putim(WINDOWPTR w,int n)

unsigned fatrib; /* field attribute *1

int errval; /* scratch for error handling '/
char c; /* scratch */
static char fbuf(MAXFLEN], ext[5]; /* scratch strings */

wnclr(w); /* clear window '/

wn printf(w,"\n\tSAVE IMAGE TO DISK "1;
strcpy~fbuf.filename); /* make copy of filename *1
while(1)

switch (n) /* decide which ext to use '/

case I
strcpy(ext,".iml"); /* append default ext iml /

chgext(filename.fbuf,ext);
break;

case 2:
strcpy(.xt.".im2"). /* append default ext im2 *f

129

chgext Cfi lenarne fbuf.ext);
break;

case 3:
strcpy(ext,-.im3-); /* append default ext .im3 ~
chgext(filename,fbuf,ext);

break;

default
strcpy(ext.' img'); 1*append default ext irnM4~
chgext Cfilename, fbuf .ext);
break;

I/* end switch ,

fatrib = (BLUE-4) I WHITE I BOLD; /* field color ~
wn-gtext(XEQ,NFRM,NFLD,w.2,1,"FiLENAME: "

fatrib,' ' ,18,filenaineNSTR,NSTR);
/* append image defaults into second commnent line *

sprintf(comline2,' Gain- Z3d; Offset- 13d; Margins- 23d, 23d; VSCALE= Z7.3f
GAINLVL,OFFSETLVL,LTMARGIN,RTMARGIN,VSDALE);

wnwrap(w,TRUE); /* allow for word wrap *

wni_printf(w.'\n COMMENTS:\n\n%s-,comline2);
wn-gtext(XEQNFRM.1NFLD,w,4 .1,NSTR,fatrib, ' -' ,48,comlinel,NSTR.N;STR) A
strcpy(comline~comlinei); /'* copy first line of comment

strcat~comline,\n);
strcat(comline,conline2); 1 append additional commients ~
wnprintf(w,-\n\nkn\n\tStoring Image..)
errval -saveirnIXS,IYS,NCOL,NROW,CO*1PRESSION,filename~comlcne);
if(errval -0) (

wnprintf(w,\n\n\ntlmage successfully SAVED");
return(0); /* all is well ~

else
wnprintf(w,"\a\ntError saving file!!");
if(errval -~ ALLOCATIONERROR)

wn_printf~w,"\n~tlnsufficient Disk Space");
if(errval -WRITEERROR)

wnprintf(w,"\n\tError writing file or values");
wnprintf(w"*k\nntTry Again [YV?');
v -kflusho; /* empty keyboard buffer first ~
c -getchC);
if(c - IN' IIc - In') return(l); /* signal problem back *

wn_clr(w);
/* end if-else *

wn_clr(w); /* clear window and try again *
J*/ end while/

I/* end putim *1

!Takes the source filename, fs. strips it of its extension, copies it to

*the destination filename. fd, and appends the new extension. ext. to the end.

void
chgext~char *fd,char *fs~char *ext)

c har *period; /* indicates position of the period ~
mnt len; /* gives length of filename less extension

period - strrchr(fs,'.)
len - strlen(fs) - strlen(period); 0
strncpy(fd,fs~len);
fd(len] - ';
strcat(fd.ext);

/* End of file SEMIO.C1

130

- ~ ~ i .-- ---V - ,'r pnotting

* .aria-Les are

* Ct :ta Ninorer o: Particles
totaL'-. Total Vr. i-re of Particles

* Nf:.es N-umiber of data files merged
Limit- arrav containing the limits of the bins

Z volume array con ta~ring the volume in each bin

cear

CLF

BINS 38; Z No of bins
fprintf C \n\nPLOT HISTOGRA-M FUNCTION\ni\n');
file = inputC'MAT-filename to plot: ''s');

evaL(t load 'file));
Zs 0;

ans i nput('Do you want to input Malvern data EY/Nl? ',');

if Cans == 'Y' Ians -= 'y')
format compact
ms = zeros~l:BINS); Z allocate BINS
for i = 1:31. 2 Malvern has 31 bins only

ms~i) = inputC[num2str~i) ' . Range num2str~limit(i))-
num2str~limit~i-1)) Percent Vol 'IC):

end
for i= BINS:-l:l Z form histogram for malvern data

zi = ms-i);
zs = (zs zi zi 0];

end
end
xs = limit(BINSs-);
vs = 0,

for i = BINS:-1:l I form histogram for SEMEX data
xh = limit~i).
xl lsmit(i+1);
yi =volume(i)*100/totalv;

xs - xs x1 xh xh];
ys (ys yi yi 0];

end
ymax = ax(Cys zs))

ypos =ymax/20;
axis((-1, 2.3, 0, max(ymax)+ypos]);
if (ans -- 'Y' Ians -- 'y')

semilogx(xs,ys, '-' *xs~zs, '-

text(3Oymax-ypos*7,' - Malvern');
texti(30,ymax-ypos*8,'__ SEMEX');

else
semilogx(xs~ys);

end
tstle('HISTOGRAM~ OF PARTICLE VOLUME');

xlabel('Particle Size in Microns (Log scale)');
ylabelC'Percent of Total Volume');
textC30.ymax-ypos*2, ['Merged from ' num2str(Nfiles) 'images'])

text(30,ymax-ypos*3, ('Filename: 'file ' .mat'))

textC30,ymax-ypos*4, ('Total Vol: num2str(totalv) um3'])
text(30.ymax-ypos*5, ('Particle Count: ' num2str(total)])

axis.

End of file SEM.M

131

LIST OF REFERENCES

1. D. W. Netzer, and J. P. Powers, "Experimental Techniques for Obtaining
Particle Behavior in Solid Propellant Combustion," paper presented at AGARD,
66th Specialists' Meeting on Smokeless Propellants, Florence, Italy, September 1985.

2. D. W. Humphries, "Mensuration Methods in Optical Microscopy," Advances
in Optical and Electron Microscopy, v. 5, Barer R. and Cosslett V. E., eds., pp. 42-69,
Academic Press, New York, 1973.

3. D. N. Redman, Image Analysis of Solid Propellant Combustion Holograms using
an InageAction Software Package, Master's Thesis, Naval Postgraduate School,
Monterey, California, January 1986.

4. E. S. Orguc, Automatic Data Retrieval From Rocket Motor Holograms, Master's
Thesis, Naval Postgraduate School, Monterey, California, December 1987.

5. D. S. Kaeser, Code Optimization of Speckle Reduction Algorithms for Image
Processing of Rocket Motor Holograms, Master's Thesis, Naval Postgraduate School,
Monterey, CA, December 1988.

6. V. R. Hockgraver, Implementation of ImageActionplus Software for Image
Analysis of Solid Propellant Combustion Holograms, Master's Thesis, Naval
Postgraduate School, Monterey, CA, September 1989.

7. J. P. Powers, Automatic Particle Sizing From Rocket Motor Holograms,
Technical Report NPS EC-91-003, Naval Postgraduate School, Monterey, CA,
December 1990.

8. Malvern Instruments, Malvern Particle Sizer Reference Manual, Version 3.0,
1986.

9. A. Gany, and D. W. Netzer, "Combustion Studies of Metallized Fuels for Solid-
Fuel Ramjets," Journal of Propulsion and Power, v. 2, No. 5, pp. 423-427, September-
October 1986.

10. E. D. Youngborg, T. E. Pruitt, M. J. Smith, and D. W. Netzer, "Light
Diffraction Particle Size Measurements in Small Solid Propellant Rockets," Journal
of Propulsion and Power, December 1989.

11. L. J. Kellman, An Experimental Validation of a Combined Optical and
Collection Probe for Solid Propellant Exhaust Particle Analysis, Master's Thesis, Naval
Postgraduate School, Monterey, CA, March 1991.

132

12. Technical Publications Dept., PCVISIONplus Frame Grabber User's Manual,
Image Technology Inc., Woburn, Massachusetts, April 1987.

13. P. Mongelluzzo, The Window BOSS, Star Guidance Consulting, Inc.,
Wateri-' iry, Connecticut, August 1988.

14. Technical Publications Dept., ITEX PCplus Programmer's Manual, Imaging
Technology Inc., Woburn, Massachusetts, April 1987.

15. Gahm, J., "Instruments for Stereometric Analysis with the Microscope - Their
Application and Accuracy of Measurement," Advances in Optical and Electron
,Microscopy, v. 5, Barer, R., and Cosslett, V. E., eds., pp. 115-161, Academic Press,
New York, 1969.

133

DISTRIBUTION LIST

No. of Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library Code 52 2
Naval Postgraduate School
Monterey, California 93943-5002

3. Department Chairman, Code EC
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California 93943-5002

4. Professor John P. Powers. Code EC/Po 4
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California 93943-5002

5. Professor David W. Netzer, Code AA/Nt 2
Naval Postgraduate School
Monterey, California 93943-5002

6. Dr. Michael Holmes, AL/LSNE 2
Air Force Phillips Laboratory
Edwards AFB, California 93523-5000

7. Mr. Lee Yeaw-Lip 2
Air Logistics Department, HQ RSAF
Mindef Building, Gombak Drive,
Republic of Singapore, SE 2366

134

